Example About Interpreting the Product Rule
(taken from Exercise 49, p. 190)
$P(t)$ represents the population of the Richmond-Petersburg, VA metro area at time t years: $t=0$ is 1999.
$A(t)$ represents the average income (per capita) for persons in that region at time t
units: t years
$P(t)$ persons
$A(t) \quad \$ /$ person
$T(t)=P(t) A(t)=$ total personal income for that region

$$
\text { units: } \quad T(t) \quad \text { persons } \cdot \$ / \text { person }=\$ 29412110200
$$

Census data gives:

$$
\begin{aligned}
& P(0)=961400 \text { persons } A(0)=30593 \$ / \text { person } T(0)=\$ 29,412,110,200 \\
& \left.\frac{d P}{d t}\right|_{t=0}=\left.9200 \frac{\text { persons }}{\text { year }} \quad \frac{d A}{d t}\right|_{t=0}=1400 \frac{\$ / \text { person }}{\text { year }}
\end{aligned}
$$

$T(t)$ changes with time. It changes partly because $P(t)$ changes and partly because $A(t)$ changes. What is the rate of change of $T(t)$ with respect to t ? The Product Rule states that

$$
\frac{d T}{d t}=P(t) \frac{d A}{d t}+A(t) \frac{d P}{d t}
$$

and evaluating each quantity when $t=0$ gives:

So, at time $t=0$ (1999), the total personal income in the area is about $\$ 29.4$ billion and it is changing at a rate of about $\$ 1.6$ billion/year.

