Derivatives and the Shapes of Curves

f(x)	f'(x)	f''(x)
Increasing Decreasing	f'(x) > 0 f'(x) < 0	
Concave up	f'(x) increasing	$f^{\prime\prime}(x)$

A critical point c of f(x) is a point in the domain of f (not an endpoint) where either f'(c) = 0 or f'(c) does not exist. Local maxima/minima, <u>if they exist</u>, can only occur at critical points (but some critical points may turn out to be neither a local maximum nor minimum).

A <u>local</u> maximum occurs at a critical point c	if $f'(x)$ switches from positive to negative at c	f''(c) < 0 (assuming that near c, f'' is continuous)
A <u>local</u> minimum occurs at a critical point <i>c</i>	if $f'(x)$ switches from negative to positive at c	f''(c) > 0 (assuming that near c, f'' is continuous)

An inflection point occurs at a point c in the domain of f if the graph of f(x) changes concavity (from up to down, or vice-versa) at the point c. Inflection points <u>may</u> occur at points where f''(c) = 0 or where f''(c) doesn't exist (but some such points c may turn out not to be inflection points after all.

If c is a point where f''(c) = 0 or f''(c) doesn't exist

An inflection point occurs at c

if f''(x) changes sign (positive to negative or vice-versa) at c.