Sums of Powers of Natural Numbers

We'll use the symbol S_{k} for the sum of the $k^{t h}$ powers of the first n natural numbers. In other words,

$$
S_{k}=1^{k}+2^{k}+\ldots+n^{k} .
$$

Of course, this is a "formula" for S_{k}, but it doesn't help you compute - it doesn't tell you how to find the exact value, say, of $S_{3}=1^{3}+2^{3}+\ldots+15^{3}$. We'd like to get what's called a closed formula for S_{k}, that is, one without the annoying " ... " in it.

For $S_{0}=1^{0}+2^{0}+\ldots+n^{0}$, this is easy: since there are n terms, each equal to 1 , so we get

$$
S_{0}=1+1+\ldots+1=1 \cdot n=n
$$

For S_{1}, it's already harder. Here's a slick way of finding a closed formula for S_{1} :
Write down S_{1} twice, in two different orders:

$$
\begin{array}{rllccccc}
S_{1} & =1 & + & 2 & + & 3 & +\ldots & +(n-1)+ \\
S_{1} & = & n & + & (n-1)+ & (n-2)+\ldots & + & 2
\end{array}+\begin{gathered}
\text { and } \\
\end{gathered}
$$

Since there are n terms on the right, each equal to $(n+1)$, we get

$$
\begin{aligned}
& 2 S_{1}=n(n+1), \text { so } \\
& S_{1}=\frac{n(n+1)}{2}
\end{aligned}
$$

This is a "usable" closed formula: for example, $1+2+3+\ldots+15=\frac{15(16)}{2}=120$.
Here's a list of formulas for:

$$
\begin{aligned}
& S_{0}=1^{0}+2^{0}+\ldots+n^{0}=n \\
& S_{1}=1^{1}+2^{1}+\ldots+n^{1}=\frac{n(n+1)}{2} \\
& S_{2}=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& S_{3}=\left[\frac{n(n+1)}{2}\right]^{2} \quad\left(\text { Curious observation: } S_{3}=\left[S_{1}\right]^{2}\right)
\end{aligned}
$$

Where do these formulas come from? There is a systematic way to get a formula for each S_{k} once you know the previous formulas for $S_{0}, S_{1}, \ldots, S_{k-1}$: We'll illustrate here with just two examples:
i) If someone noticed the (easy) fact the $S_{0}=1^{0}+2^{0}+\ldots+n^{0}=1+1+\ldots+1=n$ how could this fact be used to get a formula: $S_{1}=1^{1}+2^{1}+\ldots+n^{1}=1+2+\ldots+n=$???

Well, for any positive integer j, we know that $(j+1)^{2}-j^{2}=2 j+1$. So we write this down substituting in each value $j=1, j=2, \ldots, j=n$

$$
(n+1)^{2}-n^{2} \quad=2(n)+1 \quad \text { Adding up the columns on both sides (with lots of }
$$

cancellations on the left-hand side) gives
ii) So now we know formulas for S_{0} and S_{1}. How can use these to we get a formula for $S_{2}=1^{2}+2^{2}+\ldots+n^{2}=$??? \quad It's the same idea, but just a little more algebra.

For any j we know that $(j+1)^{3}-j^{3}=3 j^{2}+3 j+1$. So we write this down substituting each value $j=1, j=2, \ldots, j=n$

$$
\begin{array}{ll}
2^{3}-1^{3} & =3\left(1^{2}\right)+3(1)+1 \\
3^{3}-2^{3} & =3\left(2^{2}\right)+3(2)+1 \\
4^{3}-3^{3} & =3\left(3^{2}\right)+3(3)+1
\end{array}
$$

$$
(n+1)^{3}-n^{3}=3\left(n^{2}\right)+3(n)+1 \text {. Adding up the columns on both sides (with lots }
$$ of cancellations on the left-hand side) gives

$\overline{(n+1)^{3}-1}$	$=3\left(1^{2}+2^{2}+\ldots+n^{2}\right)$	$+3(1+2+\ldots+n)+(1+1+\ldots+1)$		
	+3	S_{2}	+3	S_{1}
		+	S_{0},	

so

$$
\begin{aligned}
& n^{3}+3 n^{2}+3 n+1-1=3 S_{2}+3 S_{1}+S_{0} . \quad \text { Then we solve to get } S_{2} . \\
& \qquad \begin{array}{l}
n^{3}+3 n^{2}+3 n-3 S_{1}-S_{0}=3 S_{2} \\
S_{2}=\frac{n^{3}+3 n^{2}+3 n-3 S_{1}-S_{0}}{3}
\end{array} .
\end{aligned}
$$

We can substitute the formulas we already know for S_{0} and S_{1} and simplfy to ge

$$
S_{2}=\frac{n^{3}+3 n^{2}+3 n-3\left[\frac{n(n+1)}{2}\right]-n}{3}=\ldots==\frac{n(n+1)(2 n+1)}{6}
$$

$$
\begin{aligned}
& 2^{2}-1^{2} \quad=2(1)+1 \\
& 3^{2}-2^{2} \quad=2(2)+1 \\
& 4^{2}-3^{2} \quad=2(3)+1 \\
& \overline{(n+1)^{2}-1}=2(1+2+\ldots+n)+n \\
& =2 \quad S_{1} \quad+n \quad \text { so } \\
& n^{2}+2 n+1-1=2 S_{1}+n \quad \text { so } \\
& n^{2}+n=2 S_{1} \text { so } \\
& \frac{n^{2}+n}{2}=\frac{n(n+1)}{2}=S_{1} \text {. }
\end{aligned}
$$

Optional Material

If you know the binomial formula (from high school) and can therefore expand $(j+1)^{k}$, then the same idea works for any natural number k. But the bigger k is, the more lagebra is involved. An outline goes like this.

The formula for the "binomial coefficients" : $\left.\quad\binom{k}{l}=\frac{k!}{l!(k-l)!}\right)$
Suppose we have figured out formulas for $S_{0}, S_{1}, S_{2}, \ldots, S_{k-1}$. We know (from the binomial theorem) that for any j,

$$
(j+1)^{k+1}-j^{k+1}=\binom{k+1}{1} j^{k}+\binom{k+1}{2} j^{k-1}+\binom{k+1}{3} j^{k-2}+\ldots+1
$$

Write this out for each value $j=1,2, \ldots n$.

$$
\left.\begin{array}{ll}
\left.\begin{array}{cc}
2^{k+1} \begin{array}{c}
-1^{k+1} \\
-2^{k+1} \\
3^{k+1}
\end{array} & =\binom{k+1}{1} 1^{k}+\binom{k+1}{2} 1^{k-1}+\binom{k+1}{3} 1^{k-2} \ldots+1 \\
1
\end{array}\right) 2^{k}+\binom{k+1}{2} 2^{k-1}+\binom{k+1}{3} 2^{k-2} \ldots+1
\end{array}\right] \begin{gathered}
=\binom{k+1}{1} n^{k}+\binom{k+1}{2} n^{k-1}+\binom{k+1}{3} n^{k-2} \ldots+1 . \quad \text { Add the columns: } \\
\begin{aligned}
(n+1)^{k+1}-n^{k+1} & =\binom{k+1}{1}\left(1^{k}+2^{k}+\ldots+n^{k}\right)+\binom{k+1}{2}\left(1^{k-1}+2^{k-1}+\ldots+n^{k-1}\right) \\
(n+1)^{k+1}-1 & +\binom{k+1}{3}\left(1^{k-2}+2^{k-2}+\ldots+n^{k-1}\right) \ldots+n
\end{aligned} \\
=\binom{k+1}{1} S_{k}+\binom{k+1}{2} S_{k-1}+\binom{k+1}{3} S_{k-2}+\ldots+S_{0} .
\end{gathered}
$$

Then we solve for what we want:

$$
\begin{aligned}
S_{k} & =\left[(n+1)^{k+1}-1-\binom{k+1}{2} S_{k-1}-\binom{k+1}{3} S_{k-2}-\ldots-S_{0}\right] /\binom{k+1}{1} \\
& =\left[(n+1)^{k+1}-1-\binom{k+1}{2} S_{k-1}-\binom{k+1}{3} S_{k-2}-\ldots-S_{0}\right] /(k+1)
\end{aligned}
$$

We are assuming that we already have formulas for $S_{k-1}, S_{k-2}, \ldots S_{1}, S_{0}$ - which we then substitute into this formula to get one closed, if complicated, formula for S_{k} in terms of n. Try it to find a formula for

$$
S_{4}=1^{4}+2^{4}+\ldots+n^{4}=\ldots
$$

