TRIGONOMETRIC IDENTITIES

o Reciprocal identities

) 1 1
sint = Ccos1 =
CEC U secu
1
tanu = colu =
cot u tan u
1
CSCU = — secu =
SI01 1 COS 1

o Pythagorean Identities

sin® u + cos®

u=1
1+ tan?u = sec’ u
1+ cot*u = csc?u
e Quotient Identities

sinu COS U

tanu = cotu =

COS 1 sin u

e Co-Function Identities

:-:izn(E —u) = cosu .;-,.;,,:,-(E —u) =sinu
2 2
Lan(;—r —u) =cotu r,(:-t.[g —u) =tanu

T T
(’.3{:(5 —u) = secu bOL(E —u) =cscu

e Parity Identities (Even & Odd)

sin(—u) = —sinu  cos(—u) = cosu
tan(—u) = —tanu cot(—u) = —cotu
csc(—u) = —cscu  sec(—u) = secu

e Sum & Difference Formulas
sin(u + v) = sinucosv + cosusinv
cos(u + v) = cosucosv F sinusinv
i tanu &+ tan v

1 Ftanutanw
¢ Double Angle Formulas
sin(2u) = 2sinucosu
cos(2u) = cosu —sin’u
=2cos’u—1
—1—2sinu
2tanu

G

e Power-Reducing/Half Angle For-
mulas

I — cos(:
. cos(2u)
2
1 2
s + cos(2u)
2
1 — cos(2
tan?u = M

1+ cos(2u)

e Sum-to-Product Formulas

sinu + sinwv = 2sin ute COS Ll
-7 2 2

y i uw-+uv 4 °w—v
sinu — sinv = 2cos 5 S 5

u—+ v mw—1v
cosu -+ cosv = 2cos 5 Cos 2

i u+ v i U — v
Cosu —cosv = —2s8in 2 sin 5

e Product-to-Sum Formulas

|
sinusiny = = [cos(u — v) — cos(u + v)]

1
cosucosY = [cos(u — v) + cos(u + v)]

|
sinucosv = 5 [sin(u + v) + sin(u — v)]

1
cosusiny = 2 [sin(u + v) — sin(u — v)]



Strategy for Evaluating | tan"x sec"x dx

(a) If the power of secant is even (n = 2k, k = 2), save a factor of sec’x and
use sec’x = 1 + tan’x to express the remaining factors in terms of tan x:

j‘ tan"x sec**x dx = I tan”x (sec’x)* ! sec’x dx

= I tan™x (1 + tan’x)*'sec’x dx

Then substitute ¥ = tan x.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec x tan x
and use tan’x = sec’x — 1 to express the remaining factors in terms of
sec x:

j tan***'x sec"x dx = I (tan’x)* sec”"'x sec x tan x dx

= J. (sec®x — 1)* sec" 'x sec x tan x dx

Then substitute u = sec x.



Q1 A substitution turns [tan'zsec'z dx into [ P(u) du, where P(u) is a polynomial.
What is P(u)?

A) 2ut B) u* 4 u? C) u® 4 u? D) u* + ub E) u* — uf

Answer [tan'zsec'r dx = [tan'zsec’rsec’rdr  (letu = tanx)
= [u!(14+u?)du= [u'+ubdu = ..

Q2 A substitution turns [tan®z sec®z dx into [ P(u) du, where P(u) is a polynomial.
What is P(u)?

A) 2ut B) u* — u? C) u? + u? D)u* + ub E) u* — uf

2

Answer [tan’zsec’zdr = [tan’zsec’zsecxtanzdr (letu = secx)

= [(v* = Du?du= [u' —u?du=..

The example [sec’z dz = 3(sec z tanz + In|sec z + tanz|) + C' was done in class but

it is also done in the book and not reproduced here.

Example [ tan’z sec x dx does not fit either a) or b) in the strategy outlined above.
There is no systematic way to handle this case, but it can sometimes help to convert, if
possible into other trig functions:

[tan’z sec x dx = [(sec? z — 1)secx dz = [sec’r — secx dx

= [sec’zdx — [secxdx = (from earlier examples)

1(secx tanz + In|sec z + tanz|) — In|secx + tanz| + C

ssecx tanz — jlnlsecz + tanz| + C



Trigonometric Substitution

The formula of “u-substitution” that we have been using read like
() Jf(g())g (z)dz (letu=g(z), du=g(z)dz) = [f(u)du

Notice that when you use this formula in practice, you
i) choose a (hopefully helpful) substitution v = g(x),
ii) work out [ f(u)du = the antiderivatives in terms of u and
ii) finally, substitute u = g(x) to get back to the original variable z.

For example, [2z cosz? dx

i) letu =2?% du=2zdxso [2zcosz?dr = [cosu du
i) =sinu +C
iii) use u = 2 to get back to original variable z:

sinu + C = sinz? + ¢

The particular letters used don't matter. In (*)if we replace v by x and = by ¢ (and exchange
the left/right sides of the equation) we get

%) [f(@)dz = [[fg(t)g (t)dt

This is really, the same equation but psychologically it suggests a different point of
view. Startingwith [ f(z) dz we can substitute z = g(t), dz = ¢ (t) dt

to get [ f(g(t))g (t)dt.

Notice that when you use this formula in practice, you

i) choose a (hopefully helpful) substitution z = g(%)

ii) work out [ f(g(t))d (t)dt = the antiderivatives in terms of t and

ii1) finally, substitute ¢ = ??? to get the antiderivative back into the

original variable z.
1

we need a formula ¢ = h(z) to do this — in other
words we have to be able to solve z = g(t) for ¢,
getting ¢t = h(xz) (h is the inverse function to the
function g. For example, if © = Int, then ¢t = e”.




This new sort of substitution come up in the topic of trigonometric substitutions.

Here is one kind of trigonometric substitution

When / a? — x?
occurs in a integral  try the substitution
(we can assume x = asin 6

a>0) dz = acosb df

(the inverse function we will need
later is then
_ i (2
¢ = arcsin (%)
(where, as usual, arcsin always
gives — 5 <6< 7)

1s sometimes useful because then

Va2 — 22 = /a2 — asin20
= y/a*(1 —sin?0 = /a’cos?6
= acosf.

)

(since — 5 < g < 5, we know cos 0 >0,
so \/cos? 8 = |cos 9| = cos 0; and since we
assume a > 0, \/a? = |a| = a)

Example [ —A—=dx Here, a? = 8,50 a = /8.

Substitute T = \/g sin 0
dz = \/8cos 0 df

The inverse function we will need is § = arcsm(T)

Thenf\/ﬁdx :f\/ﬁ\/gcosmwzfm\/gcosﬁd@:

f\[ fcos@d&-fldﬁ— 50+ C = —arcsm(\/g)—l—C
T

here is where the inverse function for the substitution is
needed



Example Find the area inside the ellipse %5 .+ J =1

b y =(b/a) sqrt(a%- x )

The total area within the ellipse (by symmetry) is 44, where A is the area shaded.
Since b%x? + a’y* = a®b?
a?y? = a2b? — b2 = b2(a? — 22)

2
y? =z (a® —2?)

y = £ 2y/a? — 2? is the equation for the top boundary curve of the
shaded region

So total area within ellipse

:4A:4foa %\/aQ—xde (letx = a sin 0, dx = a cos 6) df)

whenx = a, 0 = §; whenx =0, 0 = 0)

= 4b fﬁ/2 Va? — a’sin? 0 acos § df = 4° foﬂ/z v a?cos? 6 acos 0 df

=42 fﬂ/z a’cos?0df = 4abf0 ?cos?0df = 4abf7r/2 Lcos20 g

/2
= 4ab (! + Lsin 29)‘0 = dab( (% — 0) — (0 — 0)) = 7ab.

So the area of an ellipse is 7(length of semimajor axis)(length of semiminor axis) = mwab.

Notice that if a = b, then the ellipse is actually a circle ©*> + y*> = a?, and it encloses the an
area wab = wa?, the usual formula for the area of a circle !



