Q1: What trig substitution would be useful for $\int \frac{x}{8+2(x-1)^{2}} d x$?
A) $x=\sqrt{8} \sin \theta$
B) $x=\sqrt{2} \tan \theta$
C) $x=\sqrt{8} \tan \theta$
D) $x=1+2 \tan \theta$
E) $x=1-2 \sin \theta$

Answer

$$
\int \frac{x}{8+2(x-1)^{2}} d x=\int \frac{x}{2\left(4+(x-1)^{2}\right)} d x(\text { let } x-1=u, d x=d u)
$$

$=\int \frac{u+1}{2\left(4+u^{2}\right)} d u$. Then let $u=2 \tan \theta$, so that $4+u^{2}=4\left(1+\tan ^{2} \theta\right)=4 \sec ^{2} \theta$
So $x-1=u=2 \tan \theta$, or $x=1+2 \tan \theta$.
(If you practice with these substitutions, you might do the u-substitution in your head and just directly let $x=1+2 \tan \theta$.)

Partial Fractions

Suppose $P(x)$ and $Q(x)$ are polynomials; $\frac{P(x)}{Q(x)}$ is called a rational function.
We want to look as a method to find $\int \frac{P(x)}{Q(x)} d x$.
a) Mathematically, the method always works, but
b) the algebra involved (not the calculus) may make a problem too difficult without some computer assistance. We will look at relatively simple examples of the method.

The method is called partial fractions because we will write

$$
\begin{aligned}
& \frac{P(x)}{Q(x)}=-+-+\ldots+-\quad= \begin{array}{c}
\text { a sum of simpler fractions } \\
\\
\\
\\
\text { (simpler parts) that we already } \\
\text { know how to integrate. }
\end{array} \\
& \text { This sum of fractions will be called the partial fraction } \\
& \underline{\text { decomposition of } \frac{P(x)}{Q(x)}, \text { and }} \\
& \int \frac{P(x)}{Q(x)} d x=\int-d x+\int-d x+\ldots+\int-d x
\end{aligned}
$$

The goal, of course, is that the integrals on the right will be easier to do.

STEP 0) The preliminary thing required is that we work with a rational function where the degree of the numerator is less than the degree of the denominator. If that's not true at the beginning, we do a long division of polynomials to make it so;

Example $\frac{2 x^{3}-3 x^{2}-8 x-2}{x^{2}-2 x-3}$ where degree of numerator (3) is large than degree of denominator.

The division stops when the degree of the remainder is less than the degree of the divisor $x^{2}-2 x-3$

Then $\frac{2 x^{3}-3 x^{2}-8 x-2}{x^{2}-2 x-3}=$ quotient $+\frac{\text { remainder }}{\text { divisor }}=2 x+1+\frac{1}{x^{2}-2 x-3}$
So $\int \frac{2 x^{3}-3 x^{2}-8 x-2}{x^{2}-2 x-3} \quad d x=\int 2 x+1 d x+\int \frac{1}{x^{2}-2 x-3} d x$
\uparrow
easy: a polynomial degree of numerator (1)
$<$ degree of denominator (2)

Q2: $\int \frac{2 x^{3}+2 x^{2}+1}{x+1} d x=\int($ polynomial $S(x))+\left(\frac{R}{x+1}\right) d x$ where R is a constant.

What is R ?
A) 0
B) 1
C) 2
D) -1
E) -2

Answer The long division gives a remainder $R=1$; in fact

$$
\frac{2 x^{3}+2 x^{2}+1}{x+1}=2 x^{2}+\frac{1}{x+1}
$$

STEP 1) Completely factor the denominator $Q(x)$.
Doing this might be difficult, in practice. But in theory, it is a consequence a theorem called The Fundamental Theorem of Algebra (often proved in Math 430) that $Q(x)$ can always be factored (using only real numbers) into a product of linear factors (like, say, $2 x-5$) and irreducible quadratic factors (like, say. $x^{2}+x+1$).

Here, "irreducible" just means "can't be factored further into linear factors." You can tell if a quadratic $a x^{2}+b x+c$ is irreducible by using the quadratic formula to find the roots of $a x^{2}+b x+c=0$. There are real roots r_{1} and r_{2} is equivalent to saying the quadratic factors as $a\left(x-r_{1}\right)\left(x-r_{2}\right)$.

> If we allowed imaginary roots - not of interest in this course - then ax $+b x+c$ would always have roots r_{1} and r_{2} (perhaps imaginary) and factor as $a\left(x-r_{1}\right)\left(x-r_{2}\right)$

So, in theory, $Q(x)=()()() \ldots()$ where each factor () is linear or irreducible quadratic. Some of these factors might be repeated.

$$
\begin{aligned}
& Q(x)=(x-3)(2 x+1) \quad \text { or } \\
& Q(x)=(x-3)(x-3)(2 x+1)=(x-2)^{2}(2 x+1) \\
& \quad \text { or } \\
& Q(x)=(x-3)(2 x+1)\left(x^{2}+x+1\right)^{3}\left(x^{2}+x+2\right)^{2}
\end{aligned}
$$

STEP 2) The appearance of the partial fraction decomposition depends on the "mix" of factors of $Q(x)$. We need to consider 4 different possibilities:

CASE I $\quad Q(x)$ has only linear factors and none of them is repeated For example, $Q(x)=(x-3)(2 x+1)$

CASE II $\quad Q(x)$ has only linear factors with one or more of them repeated For example $Q(x)=(x-3)(x-3)(2 x+1)=(x-3)^{2}(2 x+1$

CASE III $\quad Q(x)$ has irreducible quadratic factors, and none of them is repeated.
For example, $Q(x)=(x-3)(2 x+1)\left(x^{2}+x+1\right)\left(x^{2}+x+2\right)$
CASE IV $\quad Q(x)$ has irreducible quadratic factors with one or more of them repeated.
For example, $Q(x)=(x-3)(2 x+1)\left(x^{2}+x+1\right)^{3}\left(x^{2}+x+2\right)^{2}$

CASE I In this case, the form of the partial fraction de composition is a sum of fractions like $\frac{\text { constant }}{\text { linear factor of } Q(x)}$, one fraction for each linear factor.

For example, if $\frac{P(x)}{Q(x)}=\frac{P(x)}{(x+2)(2 x-7)(3 x+5)(x-4)}$, then

$$
\frac{P(x)}{Q(x)}=\frac{A}{x+2}+\frac{B}{2 x-7}+\frac{C}{3 x+5}+\frac{D}{x-4} \quad(\text { and we need to determine } A, B, C, D)
$$

To return to the original example:

$$
\frac{2 x^{3}-3 x^{2}-8 x-2}{x^{2}-2 x-3}=2 x+1+\frac{1}{x^{2}-2 x-3} \quad d x=\int 2 x+1
$$

Focusing on the fraction: $\frac{1}{x^{2}-2 x-3}=\frac{1}{(x-3)(x+1)}=\frac{A}{x-3}+\frac{B}{x+1}$
To find A and B, multiply by the least common denominator $(x-3)(x+1)$ to clear the fractions: we then get

$$
1=A(x+1)+B(x-3)
$$

Method 1 to find A, B (combine terms)

$$
1=(A+B) x+(A-3 B)=1
$$

so we need

$$
\begin{cases}A+B & =0 \\ A-3 B & =1\end{cases}
$$

Solve these equations to get $B=-\frac{1}{4}, A=\frac{1}{4}$
Method 2 (substitute convenient x values)

$$
1=A(x+1)+B(x-3)
$$

$$
\begin{array}{ll}
\text { Let } x=3 \text { to get } 1=4 A, & \text { so } A=\frac{1}{4} \\
\text { Let } x=-1 \text { to get } 1=-4 B, & \text { so } B=-\frac{1}{4}
\end{array}
$$

Either way, $\quad \frac{1}{x^{2}-2 x-3}=\frac{1}{(x-3)(x+1)}=\frac{\frac{1}{4}}{x-3}+\frac{-\frac{1}{4}}{x+1}$ and each of these fractions is easy to integrate.

Finishing the original example: :

$$
\begin{aligned}
& \int \frac{2 x^{3}-3 x^{2}-8 x-2}{x^{2}-2 x-3} d x=\int 2 x+1 d x d x+\int \frac{1}{x^{2}-2 x-3} d x \\
& \quad \text { long division } \\
& =x^{2}+x+\int \frac{1}{x^{2}-2 x-3} d x=x^{2}+x+\int \frac{\frac{1}{4}}{x-3}+\frac{-\frac{1}{4}}{x+1} d x \\
& =x^{2}+x+\frac{1}{4} \ln |x-3|-\frac{1}{4} \ln |x+1|+C=x^{2}+x+\frac{1}{4} \ln \left|\frac{x-3}{x+1}\right|+C
\end{aligned}
$$

In case I, each fraction in the partial fraction decomposition can be integrated using a logarithm.

Note: $\int \frac{1}{x^{2}-2 x-3} d x$ could have been done without partial fractions: complete the square in the denominator and make an appropriate trig substitution.

CASE II $Q(x)$ has only linear factors but one or more of them is repeated.
Then the form of the partial fraction decomposition is similar to case one except if a linear factor $(\alpha x+\beta)$ is repeated k times, it contributes k fractions to the decomposition with denominators $(\alpha x+\beta),(\alpha x+\beta)^{2}, \ldots,(\alpha x+\beta)^{k}$.

For example, if $Q(x)=(2 x+1)^{2} \cdot($ other linear factors), then the twice-repeated
factor $(2 x+1)^{2}$ contributes $\frac{\text { constant }}{(2 x+1)}+\frac{\text { constant }}{(2 x+1)^{2}}$ to the partial fraction decomposition. Here's a specific example of the form:

$$
\begin{aligned}
& \frac{P(x)}{Q(x)}=\frac{P(x)}{x^{3}(2 x+1)^{2}(x-7)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{(2 x+1)}+\frac{E}{(2 x+1)^{2}}+\frac{F}{x-7} \\
& \uparrow \\
& \text { Example } \int \frac{x^{3} \text { is the linear factor }(x-0) \text { repeated } 3 \text { times }}{(x+1)^{2}(x-2)} d x=\int \frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2} d x
\end{aligned}
$$

Multiplying both sides by the least common denominator
gives

$$
\begin{equation*}
x=A(x+1)(x-2)+B(x-2)+C(x+1)^{2} \tag{*}
\end{equation*}
$$

Method 1: multiply out (*) on the right, collect terms, and set up a system of equations to solve for the unknowns $A, B, C . \quad\left({ }^{*}\right)$ becomes

$$
\begin{aligned}
& x=(A+C) x^{2}+(-A+B+2 C) x+(C-2 A-2 B) \\
& \text { so we need }\left\{\begin{array}{cl}
A+C & =0 \\
-A+B+2 C & =1 \\
-2 A-2 B+C & =0
\end{array}\right.
\end{aligned}
$$

Solving gives $A=-\frac{2}{9}, B=\frac{1}{3}, C=\frac{2}{9}$
Method 2 (as in CASE I) Substitute convenient x values in (*). This is certainly easier than Method 1 in this example because we can clearly see some x values that make certain terms 0 . It's then easy to find the unknowns:

$$
\begin{array}{lll}
\text { Let } x=-1 \text { to get } & -1=A(0)(-2)+B(-3)+C(0)^{2} & \text { so } B=\frac{1}{3} \\
\text { Let } x=2 \text { to get } & 2=A(0)+B(0)+9 C & \text { so } C=\frac{2}{9}
\end{array}
$$

Now substitute these values for B, C and pick another x value (random, but simple), say $x=0$:

$$
\text { In }\left({ }^{*}\right) \text {, let } x=0 \quad \text { to get } 0=-2 A+\frac{1}{3}(-2)+\frac{2}{9}(1)^{2} \quad \text { so } A=-\frac{2}{9}
$$

Then $\int \frac{x}{(x+1)^{2}(x-2)} d x$

$$
\begin{aligned}
& =\int \frac{-\frac{2}{9}}{x+1}+\frac{\frac{1}{3}}{(x+1)^{2}}+\frac{\frac{2}{9}}{x-2} d x \\
& =-\frac{2}{9} \ln |x+1|-\frac{1}{3} \frac{1}{x+1}+\frac{2}{9} \ln |x-2|+C \\
& =-\ln |x+1|^{2 / 9}-\frac{1}{3} \frac{1}{x+1}+\ln |x-2|^{2 / 9}+C \\
& =\ln \left|\left(\frac{x-2}{x+1}\right)^{2 / 9}\right|-\frac{1}{3(x+1)}+C
\end{aligned}
$$

Notice that in CASE II: the fractions in the decomposition that have a denominator with exponent 1 will integrate as logarithms; but when the exponent is bigger than 1 ,

$$
\begin{aligned}
& (k>1) \int \frac{\text { constant }}{(\alpha x+\beta)^{k}} d x=\int(\text { constant })(\alpha x+\beta)^{-k} d x \text { which integrates as a } \\
& \text { power function. }
\end{aligned}
$$

Additional example, not done in class

$$
\int \frac{1}{x(x-1)^{2}(x+3)} d x=\int \frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}+\frac{D}{(x+3)} d x
$$

To determine A, B, C, D :

$$
\begin{aligned}
\frac{1}{x(x-1)^{2}(x+3)}= & \frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}+\frac{D}{(x+3)} \\
& =\frac{A(x-1)^{2}(x+3)+B x(x-1)(x+3)+C x(x+3)+D x(x-1)^{2}}{x(x-1)^{2}(x+3)}
\end{aligned}
$$

We could (Method I) multiply out the numerator and set up a system of equations to solve for the unknown A, B, C, D. Method 2 (from CASE I) is certainly easier since we can obviously see some x 's values that make certain terms 0 . It's then easy to find 3 of the unknowns:

$$
1=A(x-1)^{2}(x+3)+B x(x-1)(x+3)+C x(x+3)+D x(x-1)^{2}
$$

Let $x=1 \quad$ and get $\quad 1=4 C \quad$ so $C=\frac{1}{4}$
Let $x=-3$ and get $\quad 1=-48 D \quad$ so $D=-\frac{1}{48}$
Let $x=0 \quad$ and get $\quad 1=3 A \quad$ so $A=\frac{1}{3}$
Substituting these values and some other (random, but simple) value, say $x=2$, gives
$1=\frac{1}{3}(1)(5)+10 B+\left(\frac{1}{4}\right)(2)(5)-\frac{1}{48}(2)$, which gives
$1=\frac{5}{3}+\frac{10}{4}-\frac{1}{24}+10 B$
$\frac{24-40-60+1}{24}=-\frac{75}{24}=10 B$, so $B=-\frac{75}{240}=-\frac{5}{16}$

So $\int \frac{1}{x(x-1)^{2}(x+3)} d x=\int \frac{\frac{1}{3}}{x}+\frac{-\frac{5}{16}}{x-1}+\frac{\frac{1}{4}}{(x-1)^{2}}+\frac{-\frac{1}{48}}{(x+3)} d x$
Notice that, as always in CASE II, each fraction will either integrate as a logarithm or a power function (when the exponent in the denominator is bigger than 1)

$$
\begin{aligned}
& \left.\left.=\frac{1}{3} \ln |x|-\frac{5}{16} \ln \right\rvert\, x-1\right)-\frac{1}{4} \frac{1}{x-1}-\frac{1}{48} \ln |x+3|+C \\
& =\ln |x|^{1 / 3}-\ln |x-1|^{5 / 16}-\frac{1}{4} \frac{1}{x-1}-\ln |x+3|^{1 / 48}+C \\
& =\ln \left|\frac{x^{1 / 3}}{(x-1)^{5 / 6}(x+3)^{1 / 48}}\right|-\frac{1}{4(x-1)}+C
\end{aligned}
$$

