In the previous lecture we introduced the method of partial fractions and stated that the partial fraction decomposition of a rational function $\frac{P(x)}{Q(x)}$ (where degree $P(x)$ is smaller than degree $Q(x))$ depends on the "mix" of factors when $Q(x)$ is factored completely.

The situation when $Q(x)$ has only linear factors, perhaps with some repeated was discussed in the preceding lecture. (Cases I and II in the textbook): in summary
if a linear factor $(a x+b)$ is repeated n times then put n fractions $\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\ldots+\frac{A_{n}}{(a x+b)^{n}}$ into the partial fraction decomposition.

Q1 What is the form for the partial fraction decomposition of $\frac{1}{x^{3}(x+1)(x+2)^{2}}$
A) $\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x+2}$
B) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x+1}+\frac{E}{x+2}$
C) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x+1}+\frac{E}{x+2}+\frac{F x+G}{(x+2)^{2}}$
D) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x+1}+\frac{E}{x+2}+\frac{F}{(x+2)^{2}}$
E) $\frac{A}{x}+\frac{B x+C}{x^{2}}+\frac{D x^{2}+E x+F}{x^{3}}+\frac{D}{x+1}+\frac{E}{x+2}+\frac{F x+G}{(x+2)^{2}}$

Answer

The linear factor x is repeated 3 times : $x^{3}=x \cdot x \cdot x$ so it contributes $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}$ to the partial fraction decomposition.

The linear factor $(x+1)$ is "repeated" only one time, so it contributes $\frac{D}{x+1}$ to the parti9al fraction decomposition.

The linear factor $(x+2)$ is repeated 2 times, so it contributes $\frac{E}{x+2}+\frac{F}{(x+2)^{2}}$ to the partial fraction decomposition

Combining all these gives the partial fraction decomposition: answer D

The following summary includes the preceding comments and also describes what happens when irreduciable quadratic factors occur in $Q(x)$.

For a rational function $\frac{P(x)}{Q(x)}$ where degree of $P(x)<$ degree of $Q(x)$
Completely factor $Q(x)=()()() \ldots()$

$$
\begin{array}{lll}
\text { each factor is either } & \text { linear } & (a x+b) \text { or } \\
& \text { irreducible quadratic }\left(a x^{2}+b x+c\right)
\end{array}
$$

To write the partial fraction decomposition (pfd) for $\frac{P(x)}{Q(x)}$

$$
=\frac{A}{()}+\frac{B}{()}+\frac{C}{()}+\ldots \text { (however many fractions it takes) }
$$

$\left\{\begin{array}{l}\text { for each nonrepeated }(a x+b) \text {, put a fraction } \frac{A}{a x+b} \text { into the } \mathrm{pf} d \\ \text { for each nonrepeated (irreducible) }\left(a x^{2}+b x+c\right) \text {, put a fraction } \frac{A x+B}{a x^{2}+b x+c} \text { into the pfd }\end{array}\right.$

Example For $\frac{1}{(x+2)^{2}\left(x^{2}+x+1\right)\left(x^{2}+x+2\right)^{2}}$, the for for the pfd is

$$
\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C x+D}{x^{2}+x+1}+\frac{E x+F}{x^{2}+x+2}+\frac{G x+H}{\left(x^{2}+x+2\right)^{2}}
$$

We will illustrate a case where there is an irreduicable quadratic factor. The TAs will do an example with a repeated irreducible factor in the discussion section tomorrow.

But first: when irreducible quadratic denominators occur, the following integral often comes up. It's useful to have a genera formula for it>

Q1 Find $\int \frac{1}{x^{2}+a^{2}} d x$
(all answers below should include " $+C$ "-- omitted here to save space)
A) $\arctan \left(x^{2}+a^{2}\right)$
B) $a \arctan \left(\frac{x}{a}\right)$
C) $\frac{1}{a^{2}} \arctan x$
D) $\frac{1}{a} \arctan \left(\frac{x}{a}\right)$
E) $x^{2} \arctan \left(\frac{x}{a}\right)$

Answer \quad Let $x=a \tan \theta, d x=a \sec ^{2} \theta d \theta$. Then

$$
\int \frac{1}{x^{2}+a^{2}} d x=\int \frac{1}{a^{2} \tan ^{2} \theta+a^{2}} a \sec ^{2} \theta d \theta=\frac{1}{a} \int \frac{\sec ^{2} \theta}{\sec ^{2} \theta} d \theta=\frac{1}{a} \int 1 d \theta=\frac{\theta}{a}+C=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C
$$

Example $\int \frac{x+2}{(x+1)\left(x^{2}+x+1\right)} d x$

$$
\begin{aligned}
\frac{x+2}{(x+1)\left(x^{2}+x+1\right)} & =\frac{A}{x+1}+\frac{B x+C}{x^{2}+x+1} . \quad \text { Multiply both sides by }(x+1)\left(x^{2}+x-1\right) \\
x+2 & =A\left(x^{2}+x+1\right)+(B x+C)(x+1) \\
& =(A+B) x^{2}+(A+B+C) x+(A+C)
\end{aligned}
$$

$$
\text { so we need } \begin{cases}A+B & =0 \\ A+B+C & =1 \\ A+C C & =2\end{cases}
$$

so

$$
\begin{gathered}
\int \frac{x+2}{(x+1)\left(x^{2}+x+1\right)} d x=\int \frac{1}{x+1}+\frac{1-x}{x^{2}+x+1} d x=\int \frac{1}{x+1} d x+\int \frac{1-x}{x^{2}+x+1} d x \\
=\ln |x+1|+\int \frac{1-x}{x^{2}+x+1} d x
\end{gathered}
$$

For $\int \frac{1-x}{x^{2}+x+1} d x$:
compelete the square $\quad \int \frac{1-x}{x^{2}+x+1} d x=\int \frac{1-x}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x$
substitute $u=x+\frac{1}{2}, d u=d x, 1-x=\frac{3}{2}-u$

$$
=\int \frac{\frac{3}{2}-u}{u^{2}+\frac{3}{4}} d u
$$

split into two integrals

$$
=\int \frac{\frac{3}{2}}{u^{2}+\frac{3}{4}} d u-\int \frac{u}{u^{2}+\frac{3}{4}} d u
$$

For the first integral, use $\int \frac{1}{u^{2}+a^{2}} d u=\frac{1}{a} \arctan \left(\frac{u}{a}\right) \quad$ (from Q2, above)

$$
\begin{aligned}
& \int \frac{\frac{3}{2}}{u^{2}+\frac{3}{4}} d u=\frac{3}{2} \int \frac{1}{u^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d u=\frac{3}{2} \cdot \frac{1}{\left(\frac{\sqrt{3}}{2}\right)} \arctan \left(\frac{u}{\frac{\sqrt{3}}{2}}\right) \\
& =\sqrt{3} \arctan \left(\frac{2 u}{\sqrt{3}}\right)=\sqrt{3} \arctan \left(\frac{2\left(x+\frac{1}{2}\right)}{\sqrt{3}}\right)=\sqrt{3} \arctan \left(\frac{2 x+1)}{\sqrt{3}}\right)
\end{aligned}
$$

For the second integral, let $t=u^{2}+\frac{3}{4}, \frac{1}{2} d t=u d u$, so that

$$
\begin{aligned}
\int \frac{u}{u^{2}+\frac{3}{4}} d u & =\frac{1}{2} \int \frac{1}{t} d t=\frac{1}{2} \ln |t|=\frac{1}{2} \ln \left(u^{2}+\frac{3}{4}\right) \\
& =\frac{1}{2} \ln \left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)=\frac{1}{2} \ln \left(x^{2}+x+1\right)
\end{aligned}
$$

Putting all the pieces together:

$$
\begin{aligned}
\int \frac{x+2}{(x+1)\left(x^{2}+x+1\right)} & d x=\int \frac{1}{x+1}+\frac{1-x}{x^{2}+x+1} d x=\int \frac{1}{x+1} d x+\int \frac{1-x}{x^{2}+x+1} d x \\
= & \ln |x+1|+\int \frac{1-x}{x^{2}+x+1} d x \\
& =\ln |x+1|+\sqrt{3} \arctan \left(\frac{2 x+1)}{\sqrt{3}}\right)-\frac{1}{2} \ln \left(x^{2}+x+1\right)+C
\end{aligned}
$$

