Review

Q1. Using an integral, find the length of $y=5 x-7$ for $10 \leq x \leq 12$.
A) $4 \sqrt{3}$
B) $2 \sqrt{26}$
C) $2 \sqrt{6}$
D) 10
E) $2 \sqrt{13}$

Answer $\frac{d y}{d x}=5$, so length $=\int_{10}^{12} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{10}^{12} \sqrt{1+5^{2}} d x=2 \sqrt{26}$

If $y=f(t)$, and point $P=(a, f(a)$ is a point on the graph. Then
$s(x)=\int_{a}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t=$ the length of the curve measured between the chosen starting point P and the point $(x, f(x)) . s$ is called the arc length function for f measured from $(a, f(a))$.

Q2. Write the integral that gives the length $s(x)$ (it depends on x !) of $y=1+t^{\frac{3}{2}}$ for $1 \leq t \leq x$.
A) $\int_{1}^{x} \sqrt{1+\frac{3}{2} t^{\frac{1}{2}}} d t$
B) $\int_{1}^{x} \sqrt{\frac{9}{4}} t d t$
C) $\int_{1}^{x} \sqrt{1+\frac{9}{4} t} d t$
D) $\int_{1}^{x} \sqrt{\frac{3}{2}+\frac{9}{4} t} d t$
E) $\int_{1}^{x} \sqrt{\frac{9}{4}+\frac{9}{4} t^{2}} d t$

Answer $\frac{d y}{d t}=\frac{3}{2} t^{\frac{1}{2}}$, so $s(x)=\int_{1}^{x} \sqrt{1+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{1}^{x} \sqrt{1+\frac{9}{4} t} d t$

$$
\left(=\ldots=\frac{1}{27}\left((4+9 x)^{3 / 2}-13^{3 / 2}\right)\right.
$$

In this case, for example, $s(2)=\frac{1}{27}(22 \sqrt{22}-13 \sqrt{13})$ gives the distance along the graph from the starting point $(1,2)$ to the pont $\left(2,1+2^{3 / 2}\right)=(2,1+2 \sqrt{2})$

In general, for $y=f(x)$, an arc length function looks like $s=\int_{a}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t$ (where a determines the starting point $(a, f(a))$ on the graph from which distance along the curve is measured.)

Since s is a function of x, the Fundamental Theorem of Calculus tells us (assuming f^{\prime} is continuous) that

$$
\begin{array}{ll}
\frac{d s}{d x}=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \quad \begin{array}{l}
\text { Since } \frac{d s}{d x} \geq 0, \text { the means that } \\
s \text { is an increasing function of } x: \text { bigger } x \text { means bigger } \\
\\
\\
\\
\\
\\
\\
\\
\end{array} \begin{array}{l}
\text { length } s(x) \text { (which should }
\end{array} \\
& \text { instutitvely obvious) }
\end{array}
$$

In differential notation, we can write this $d s=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
For a given value of x, this means:
if x is changed by a small amount $d x=\Delta x$, then s changed by an (exact) amount Δs, and $\Delta s \approx d s$ if $d x$ is small.

Notice, that, not only is $\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \geq 0$ but actually $\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \geq 1$. Therefore $d s \geq d x$: so when x changes by a small amount $d x$, s changes approximately by $d s$, and this $d s \geq d x$. (This should also be intuitively obvious: draw a picture and pick an x. If x changes by, say, $d x=0.1$, you should see that the corresponding change in arc length is ≥ 0.1 - how much larger depends on the value of $\sqrt{1+\left(f^{\prime}(x)\right)^{2}}$ and that in turn depends on "how steep" your graph is near x (as measured by the value of $\left.f^{\prime}(x)\right)$; ds will equal dx only when $f^{\prime}(x)=0$ at your point x.)

This is the same general interpretation of the symbols as we had in Math 131 when doing linear approximations with differentials:
if we had $y=f(x)$ and changed x by a small amount $d x=\Delta x$: then y changes by an (exact) amount Δy, and $\Delta y \approx d y$ if $d x$ is small.

The lecture then imoved on to the topic of "apprpximate integration." We already know how to approximate an integral $\int_{a}^{b} f(x) d x$ using L_{n}, R_{n}, or M_{n} (the left endpoint, right endpoint, or midpoint rules). We introduced Simpson's Rule S_{n} which usually is more accurate than the other rules (for the same value of n).

We discussed in detail Simpson's Rule starting $S_{2}(n=2)$
The interval $[a, b]$ is divided into 2 equal parts of length $\frac{b-a}{2}=\boldsymbol{\Delta x}=\boldsymbol{h}$.
The endpoints of the subintervals are $a=x_{0}, x_{1}, x_{2}=b$. The corresponding points on the graph of $y=f(x)$ are $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ where $y_{0}=f\left(x_{0}\right), y_{1}=f\left(x_{1}\right)$, $y_{2}=f\left(x_{2}\right)$.

We consider a quadratic function ("parabola") $y=q(x)$, through there three points and make an approximation:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx & \int_{a}^{b} q(x) d x=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) \\
& \text { (see picture and calculation below) }
\end{aligned}
$$

Starting on the right: the approximation is $\int_{a}^{b} f(x) d x=\int_{a}^{b} q(x) d x=? ?$? Translate the figure left/right (focusing only on the quadratic curve) so the x_{1} moves to the origin.
The signed area between the parabola and x-axis doesn't change and y_{0}, y_{1}, y_{2} do not change between the pictures! So (on the left):

$$
\begin{aligned}
& \begin{array}{c}
\int_{-h}^{h} A x^{2}+B x+C d x=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)=\int_{x 0}^{x_{2}} q(x) d x \\
\quad \begin{array}{c}
\text { (see below) }
\end{array}
\end{array} \\
& \text { even function odd function } \\
& \int_{-h}^{h} A x^{2}+B x+C d x=\int_{-h}^{h} A x^{2}+C d x+\int_{-h}^{h} B x d x= \\
& =2 \int_{0}^{h} A x^{2}+C d x+0 \\
& =\left.2\left(A \frac{x^{3}}{3}+C x\right)\right|_{0} ^{h}=2\left(A \frac{h^{3}}{3}+C h\right)=\frac{h}{3}\left(2 A h^{2}+6 C\right) \\
& \text { We know that } \begin{cases}y_{0}=Q(-h)=A(-h)^{2}+B(-h)+ & C=A h^{2}-B h+C \\
y_{1}=Q(0) & = \\
y_{2}=Q(h) & =A h^{2}+B h+C\end{cases}
\end{aligned}
$$

Add Equation $1+4\left(\right.$ Equation 2) + Equation 3: $\quad 2 A h^{2}+6 C=y_{0}+4 y_{1}+y_{2}$ so

$$
\int_{-h}^{h} A x^{2}+B x+C d x=\frac{h}{3}\left(2 A h^{2}+6 C\right)=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)
$$

For Simpson's Rule S_{n} in general (see textbook, and worked out in class):
n must be even: the interval $a, b]$ is divided into n equal parts of length $h=\Delta x=\frac{b-a}{n}$

$$
a=x_{0}<x_{1}<x_{2}<\ldots . \ll x_{n-2}<x_{n-1}<x_{n}=b
$$

Since n is even, we can "group" the subinteverals as

$$
\left[x_{0}, x_{2}\right],\left[x_{2}, x_{4}\right],\left[x_{4}, x_{6}\right], \ldots,\left[x_{n-2}, x_{n}\right]
$$

and do a parabolic approximation to f on each each of these subintervals. (The case of S_{2} one subinterval $\left[x_{0}, x_{2}\right]$ - was shown above)

The result, from class: $\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\ldots+\int_{x_{n-2}}^{x_{n}} f(x) d x$

$$
\begin{aligned}
\int_{a}^{b} f(x) & d x \quad=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\ldots+\int_{x_{n-2}}^{x_{n}} f(x) d x \\
& \approx \int_{x_{0}}^{x_{2}} \text { (quadratic) } d x+\int_{x_{2}}^{x_{4}}(\text { quadratic }) d x+\ldots+\int_{x_{n-2}}^{x_{n}}(\text { quadratic }) d x \\
& =\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)+\frac{h}{3}\left(y_{2}+4 y_{3}+y_{4}\right)+\ldots+\frac{h}{3}\left(y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& =\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\ldots .+4 y_{n-1}+y_{n}\right)=S_{n}
\end{aligned}
$$

Example Use Simpson's Rule S_{4} to approximate the value of $\int_{2}^{3} \frac{1}{x+1} d x$. (This integral is simple enough that we don't need to make an approximate - the exact value is
$\left.\ln (x+1)\right|_{2} ^{3}=\ln 4-\ln 3=\ln \frac{4}{3}(\approx 0.287682$, rounded to 6 decimal places $)$. But knowing the exact value, we can compare it to what aproximation is made by S_{4}.

$$
\begin{aligned}
& h=\frac{1}{4}=\Delta x ; \text { endpoints of the subintervals are } \\
& \qquad 2<\frac{9}{4}<\frac{5}{2}<\frac{11}{4}<3 \\
& \int_{2}^{3} \frac{1}{x+1} d x \approx S_{4}=\frac{1}{3}\left(f(2)+4 f\left(\frac{9}{4}\right)-2 f\left(\frac{5}{2}\right)+4 f\left(\frac{11}{4}\right)+f(3)\right) \approx 0.287682
\end{aligned}
$$

Rounded to 6 decimal places, the "error" in approximating the integral by S_{4} is only 0.000001 !

