Review

Q1. Using an integral, find the length of y = 5z — 7 for 10 < x < 12.
A) 4/3  B)2v/26 ()26 D) 10 E) 2¢/13
Answer % = 5, 50 length = f1102\/ 1+ ()2 dy = \/ 1+ 52dx =2+/26

If y = f(t), and point P = (a, f(a) is a point on the graph. Then

= [7\/1+ (f'(t))? dt = the length of the curve measured between the chosen

starting point P and the point (z, f(x)). s is called the arc length function for f
measured from (a. f(a)).

Q2. Write the integral that gives the length s(z) (it depends on z!) of y =1+ t2 for
1<t <.

A) [T/1+ 3tz dt B) [/t dt O [7y/1+3tdt
D) [{\/3+ 3tdt B) [/ 1+ 12 dt

Answer % = %t%,so s(z) = [[\/1+ (%)th: ff, /1+ %tdt
(= ... = 5((4+92)%? —13%2)

In this case, for example, s(2) = 3-(221/22 — 134/13 gives the distance along the
graph from the starting point (1,2) to the pont (2, 14 23/2) = (2,1 +2,/2)



In general, for y = f(x), an arc length function looks like s = ["+/1 + (f'(t))?dt
(where a determines the starting point (a, f(a)) on the graph from which distance along

the curve is measured.)

Since s is a function of x, the Fundamental Theorem of Calculus tells us (assuming ' is
continuous) that

45 — /14 (f'(z))* Since % > 0, the means that
s 1s an increasing function of z : bigger x means bigger
length s(x) (which should
be instutitvely obvious)

In differential notation, we can write this ds = /1 + (f'(z))? dx
For a given value of z, this means:

if  is changed by a small amount dx = Az, then s changed by an
(exact) amount As, and As ~ ds if dz is small.

Notice, that, not only is \/1 + (f'(x))? > 0 but actually

1+ (f'(x))? > 1. Therefore ds > dx : so when x changes by a small
amount dx, s changes approximately by ds, and this ds > dx. (This
should also be intuitively obvious: draw a picture and pick an x. If x
changes by, say, dx = 0.1, you should see that the corresponding change
in arc length is > 0.1 — how much larger depends on the value of

1+ (f'(x))? and that in turn depends on “how steep” your graph is
near x (as measured by the value of f'(x)); dswill equal dx only when
f'(z) = 0 at your point x.)

This is the same general interpretation of the symbols as we had in Math
131 when doing linear approximations with differentials:

if we had y = f(z) and changed x by a small amount dz = Ax:
then y changes by an (exact) amount Ay, and Ay ~ dy if dx is
small.

The lecture then imoved on to the topic of “apprpximate integration.” We already know
how to approximate an integral ff f(x)dzusing L,, R,, or M, (the left endpoint, right

endpoint, or midpoint rules). We introduced Simpson's Rule S,, which usually is more
accurate than the other rules (for the same value of n).



We discussed in detail Simpson's Rule starting Sy (n = 2)

The interval [a, b] is divided into 2 equal parts of length 252 = Az = h.

The endpoints of the subintervals are a = z(, 1, o = b. The corresponding points on the
graph Ofy = f(.T) are (.’L‘(), yO)a (x17y1>7 (.7132, y2) where Yo = f(xﬂ)a Y1 = f(xl)a

Y2 = f(x2).

We consider a quadratic function (“parabola”) y = ¢(x), through there three points and make
an approximation:

2 f(@)de = [Pq(x)dz = B (yo + 4y + yo)
1

(see picture and calculation below)



y = Q(x) = Ax 2Bx+C y= quadratic =q(x)
0,y1) (xLy1)
(-h,yo0) (x0,y0) #
) (2.y2)
h h
-h 0 b x0 x1 x2

b

— Translate left/right so x1 moves to 0

Starting on the right: the approximation is fff(a:)dsc = f:q(x)dx = ??? Translate the
figure left/right (focusing only on the quadratic curve) so the x| moves to the origin.
The signed area between the parabola and x-axis doesn't change and vy, y1, Yo do not
change between the pictures! So (on the left):

ffh Az’ + Bz + Cdx = 2(yo + 4y + o) = [5q(x) da
T

(see below)

even function odd function
fZLAa:Q +Br+Cdx = fth:L'Q +Cdz + fthx dz =

=2[' Az’ + Cdz + 0
3 h 3
—2(AL 4 cx)]o = (AL 4+ Ch) = 1(24h% + 6C)

yo=Q(—h)=A(—h)*+B(—h)+C=Ah*—Bh+C
We know that ¢ y; = Q(0) = C
y2 = Q(h) = Ah?+ Bh+C
Add Equation 1 + 4(Equation 2) + Equation 3: ~ 2Ah? + 6C = yy + 4y1 + 2
SO

J" Az® + Bz + Cdx = 1(2Ah% + 6C) = 2 (yo + 4y1 + 1)



For Simpson's Rule S, in general (see textbook, and worked out in class):

b—a
n

nmust be even: the interval a, b] is divided into n equal parts of length h = Az =
Aa=2)<T1 <9< ... < <Tpo<Ty_1<xy,=0~>0

Since n is even, we can “group" the subinteverals as
[0, z2], [x2, z4], [T4, T6], v\ [Tn_2,Ty]

and do a parabolic approximation to f on each each of these subintervals. (The case of S,
one subinterval [z, 23] — was shown above)

The result, from class: fff(x) dr = [ f(x)de + [ f(z)de+ ..+ [ f(z

Tp—2

[ f@yde = [Pf@)de + [ f(@)do+ ..+ [ f(o

Tp

~ [ (quadratic) dz + ['(quadratic) dz + ... + [ (quadratic) dx

w|=

(Yo + 4y +v2) + 2(yo + 4ys + ya) + o + 2 (Y2 + Y01 + yn)

B (yo + dyy + 2yo + 4ys + 2ya + oo + dyn1 +yn) = S,

Example Use Simpson's Rule S to approximate the value of f2 —dx. (This integral is simple
enough that we don't need to make an approximate — the exact value is

3
In(z+ 1) , = In4—In3 =1In3 (~ 0.287682, rounded to 6 decimal places). But knowing the

exact value, we can compare it to what aproximation is made by S,.
h = i = Auz; endpoints of the subintervals are

2<<<<3

(f2) +4f(DH—2f(3) +4f (&) + f(3)) ~ 0.287682.
(rounded to 6
decimal places).

[SCI ST

3_1 ~ _
f2 Side =~ Sy =

Rounded to 6 decimal places, the “error” in approximating the integral by Sj is only 0.000001 !



