$$
\text { Suppose we want to approximate } \int_{a}^{b} f(x) d x
$$

We subdivide $[a, b]$ into n equal subintervals of width Δx. The subintervals are

The midpoints of the subintervals are denoted by $\overline{x_{i}}$
Q1: For the Midpoint Rule, the approximation is

$$
M_{n}=? \cdot\left(■ f\left(\overline{x_{1}}\right)+■ f\left(\overline{x_{2}}\right)+■ f\left(\overline{x_{3}}\right) \ldots+\ldots+\boldsymbol{\square}\left(\overline{x_{n}}\right)\right) \text { where }
$$

A) $?=\Delta x$, and the pattern of coefficients $\boldsymbol{\square} \boldsymbol{\square}, \boldsymbol{\square} \ldots \ldots, \boldsymbol{\square}$ is $1,2,1, \ldots, 2,1$
B) $?=\Delta x / 2$, and the pattern of coefficients $\square, \square, \ldots \ldots, \square$ is $1,2,1, \ldots, 2,1$
C) $?=\Delta x$, and the pattern of coefficients $\square, \square, \square \ldots \ldots, \square$ is $1,1,1, \ldots, 1,1$
D) $?=\Delta x / 3$, and the pattern of coefficients $\square, \square, \square \ldots \ldots, \square$ is $1,4,2,4, \ldots, 2,1$
$\mathrm{E}) ?=\Delta x / 3$, and the pattern of coefficients \square, $\boldsymbol{\square}, \ldots \ldots$. \square is $1,4,2,4,2, \ldots, 4,1$ Answer C, boldfaced

Q2: For Simpson's Rule (only for even n), the approximation is

$$
S_{n}=? \cdot\left(\square f\left(x_{0}\right)+■ f\left(x_{1}\right)+■ f\left(x_{2}\right)+\ldots+■ f\left(x_{n}\right)\right) \quad \text { where }
$$

A) $?=\Delta x$, and the pattern of coefficients $\boldsymbol{\square} \boldsymbol{\square}, \boldsymbol{\square} \ldots \ldots, \boldsymbol{\square}$ is $1,2,1, \ldots, 2,1$
B) $?=\Delta x / 2$, and the pattern of coefficients $\square, \square, \ldots \ldots, \square$ is $1,2,1, \ldots, 2,1$
C) $?=\Delta x$, and the pattern of coefficients $\square, \square, \square \ldots \ldots$, is $1,1,1, \ldots, 1,1$
D) $?=\Delta x / 3$, and the pattern of coefficients \square, \square, $\ldots \ldots$..... \square is $1,4,2,4,2, \ldots, 2,1$
E) $?=\Delta x / 3$, and the coefficient pattern $\square, \square, \square \ldots, \square$ is $1,4,2,4,2, \ldots, 4,1$ Answer E), boldfaced

$$
\text { Approximating } \int_{a}^{b} f(x) d x
$$

Divide $[a, b]$ into n subintervals, each of width $\Delta x=\frac{b-a}{n}$
The n subintervals are

Midpoint Rule:

$$
M_{n}=\Delta x\left(f\left(\overline{x_{1}}\right)+\ldots+f\left(\overline{x_{i}}\right)+\ldots+f\left(\overline{x_{n}}\right)\right)
$$

Simpson's Rule (n must be even) :

$$
S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example: $\int_{0}^{1} \cos x d x$ (an easy integral to evaluate exactly, but chosen so we can compare the exact value to the approximate values : $\int_{0}^{1} \cos x d x=\sin 1$)

With $n=4:$ Subintervals are $\left[0, \frac{1}{4}\right], \quad\left[\frac{1}{4}, \frac{1}{2}\right], \quad\left[\frac{1}{2}, \frac{3}{4}\right], \quad\left[\frac{3}{4}, 1\right]$

$$
\Delta x=\frac{1}{4}
$$

The $\underline{\text { midpoints }}$ are $\quad \overline{x_{1}}=\frac{1}{8}, \quad \overline{x_{2}}=\frac{3}{8}, \quad \overline{x_{3}}=\frac{5}{8}, \quad \overline{x_{4}}=\frac{7}{8}$

$$
\begin{aligned}
& \begin{array}{l}
M_{4}=\frac{1}{4}\left(f\left(\frac{1}{8}\right)+f\left(\frac{3}{8}\right)+f\left(\frac{5}{8}\right)+f\left(\frac{7}{8}\right)=\right. \\
\quad 0.843666 \\
\quad \text { (rounded to } 6 \text { decimal places) } \\
S_{4}=\frac{1 / 4}{3}\left(f(0)+4 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+4 f\left(\frac{3}{4}\right)+f(1)\right) \\
=\frac{1}{12}\left(\cos (0)+4 \cos \left(\frac{1}{4}\right)+2 \cos \left(\frac{1}{2}\right)+4 \cos \left(\frac{3}{4}\right)+\cos (1)\right)=0.841489
\end{array}
\end{aligned}
$$

Error Estimates:

In general, for $\int_{a}^{b} f(x) d x$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=M_{n}+E_{M} \\
& \left|\int_{a}^{b} f(x) d x-M_{n}\right|=\left|E_{M}\right| \leq \frac{K_{K(b-a)^{3}}^{24 n^{2}}}{\text { where } K} \text { is chosen so }\left|f^{\prime \prime}(x)\right| \leq K \text { on }[a, b]
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=S_{n}+E_{S} \\
& \left|\int_{a}^{b} f(x) d x-S_{n}\right|=\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}
\end{aligned}
$$

These "error bound formulas" give us a handle on error size:

$$
\begin{array}{r}
\text { "the magnitude of the error in the approximation" } \leq \ldots \\
\qquad \text { is at most } \ldots
\end{array}
$$

Examples:

1) $\quad \int_{0}^{1} \cos x d x=M_{4}+E_{M}$

$$
\text { can choose } K=1 \text { since }
$$

$\left|f^{\prime \prime}(x)\right|=|-\cos x| \leq 1$ on $[0,1]$
$\left|\int_{0}^{1} \cos x d x-M_{4}\right|=\left|E_{M}\right| \leq \frac{K(1-0)^{3}}{24 n^{2}}=\frac{1}{24 n^{2}}=\frac{1}{24 \cdot 4^{2}}=0.002604$
(rounded to 6 decimal places)
so $\quad-0.002604 \leq \int_{0}^{1} \cos x d x-M_{4} \leq 0.002604$
so

$$
0.843666-0.002604 \leq \int_{0}^{1} \cos x d x \leq 0.843666+0.002604
$$

$$
\begin{aligned}
& 0.841062 \leq \int_{0}^{1} \cos x d x \leq 0.846270 \\
& \uparrow \\
& \text { exact value }=\sin 1 \\
&(=0.841471, \text { rounded to } 6 \text { decimal places })
\end{aligned}
$$

2) $\quad \int_{0}^{1} \cos x d x=S_{4}+E_{S}$

$$
\text { can choose } K=1 \text { since }\left|f^{(\mathrm{iv})}(x)\right|
$$

$$
\left|f^{(\mathrm{iv})}(x)\right|=|-\cos x| \leq 1 \text { on }[0,1]
$$

$$
\left|\int_{0}^{1} \cos x d x-M_{4}\right|=\left|E_{M}\right| \leq \frac{K(1-0)^{3}}{180 n^{4}}=\frac{1}{180 \cdot 4^{4}}=0.000022
$$ (rounded to 6 decimal places)

so $\quad-0.000022 \leq \int_{0}^{1} \cos x d x-S_{4} \leq 0.000022$
$S_{4}-0.000022 \leq \int_{0}^{1} \cos x d x \leq S_{4}+0.000022$
$0.841489-0.000022 \leq \int_{0}^{1} \cos x d x \leq 0.841489+0.000022$

$$
\begin{aligned}
& 0.841467 \leq \int_{0}^{1} \cos x d x \leq 0.841511 \\
& \uparrow \\
& \quad \text { exact value }=\sin 1 \\
& \quad(=0.841471, \text { rounded to } 6 \text { decimal places })
\end{aligned}
$$

How large must n be to guarantee that $\left|\int_{0}^{1} \cos x d x-M_{n}\right|<10^{-6}$?
This will be true if $\left|\int_{0}^{1} \cos x d x-M_{n}\right| \leq \frac{1(1-0)^{3}}{24 n^{2}}<10^{-6}$

$$
\begin{array}{ll}
& 24 n^{2}>10^{6} \\
\text { so we need } & n>\sqrt{\frac{10^{6}}{24}} \approx 204.1
\end{array}
$$

Since n is an integer, $\quad n=205$ is guaranteed to work.

How large must n be to guarantee that $\left|\int_{0}^{1} \cos x d x-S_{n}\right|<10^{-6}$?
This will be true if $\left|\int_{0}^{1} \cos x d x-S_{n}\right| \leq \frac{1(1-0)^{5}}{180 n^{4}}<10^{-6}$

$$
180 n^{4}>10^{6}
$$

so we need $\quad n>\sqrt[4]{\frac{10^{6}}{180}} \approx 8.6$
Since n must be an even integer $\quad n=10$ is guaranteed to work.

