Error bound Eg for Simpson's Rule (n even)

\f f(z)dx —8,) < Kl(g(;fi)s where K must be chosen so that | f)(2)| < K on [a, b]

Ql: If | @) (x)| < 4 on [0, 4], then |f0 z)dr — Sy| < ?

A) £ =~ 0.089 B) 2 ~0.044 C) 155 ~ 0.039 D) 25 ~ 0.133
E) & ~ 0.156
Answer: | fo x)dxr — Sy| < 120 9" We are told that we can use K = 4.
So | [Mf(x)de — Sy < MO0 & &£ 4
0 4 180 (4)? 180(4%) 180 45

Q2: We use Simpson's Rule with n = 2 to approximate f_lg 23 — 42 + 132 — Tdx.

We can then say that | f_lg 23— 42 + 130 — Tdw — So| < ?

A) 5 B) 15 C) 1 D) L E)0
Answer For f(x) = 2° — 42% + 132z — 7 (or any cubic polynomial)
fl(z) = uadratic polynomial (degree 2)
f"(z) = linear polynomial (degree 1)
f "(x) = constant polynomial (“degree 0)
and ™) () =0

So for this example (or f (any cubic polynomial) dx) we can choose K = 0, and get

|f (cubic polynomial) dz: — S| < ° 180 )3 =0

This says the magnitude of the error for Simpson's rule here, even with n = 2,is 0 : so
the error is 0 — meaning that f;(cubic polynomial) dz = S (exactly!)

To illustrate with a numerically simpler example: f02 ridr =

1
0
and Simpson S, = £ (0% + 4(1)* + 2%) = 22 = 4! S, “nails it” exactly!

2
| =18 =4 (exact value!)



Example Estimate ff f(x)dx = f12 5% o and error using S,
Calculate S5 : Az = ¢

So = M) +4f (D) +2f() +4F () +2f () + 4 () + £(3))
= 2.6046953633 (rounded)
Estimate error: Recall that for any numbers a, b
|+ b] < |a] + [b]
This also gives us
la—bl=la+(=0) < |a|+[(=0)| = [a] + 0]
Some calculation (perhaps assisted by something like Wolfram Alpha) gives

sinx

fi)(z) = -~ ( —4sinx — 12sin 3x — 24cos 2z + cos4r — 1)

so taking | | and using the inequalities above gives

0 ()] < et (4| sinx | + 12 |sin 3z| + 24| cos 2z | + |cos 4z | + 1)

n
8

sina

8

e

Since [sin x| < 1 always, its guaranteed that < %] = £ s0

ool

< fMd+12424+1+1| =% =2

Therefore we can use K = % to get

B (2 1y

|f265i“"’ dr — Sg| < K(b—a) _ = .0000611753 (rounded), or

1 180n1 180(67)
50 —.0000611753 < [len da — S < .0000611753
SO
S —.0000611753 < [lesneda < S5 + . 0000611753

which works out to
2.6046953633 — .0000611753 < ffesmxdaz < 2.6046953633 + . 0000611753

2.6046341880 < ffesm"”dx < 2.6047565386

(For comparison: to 5 decimal places, Wolfram Alpha (using who-knows-what method,
but likely very accurate ) gives the value ffesm”’dx = 2.60466 (rounded to 5 decimal
places by default)



Example where approximating the integral is necessary because we don't have a formula
for the function we want to integrate, only graphical or numerical information.

Water leaked from a tank at a rate of r(¢) liters per hour, where
the graph of r is as shown. Use Simpson’s Rule to estimate the
total amount of water that leaked out during the first 6 hours.

r‘

-

o

0

™)
H

6 ! (seconds)

The total amount leaked (New Change Theorem!) is foﬁr(t) dt which we can approximate
from the graph using, say n = 6 with Az=1:

Visually estimate

t | r(t)
014
13
7
2|3
15
3| %
3
413
9
5|5
6|1

Amount of water in tank at time ¢ :  A(¢)

Total amount leaked

= [Vr(t)dt

“=r()

~ Sp = 1(r(0) + 4r(1) + 2r(2) + 4r(3) + 2r(4) + 4r(5) + 7(6)) ~ 12.2 L



The lecture ended with a brief introduction to one kind of improper integral

. 00 1 00 1
Consider [~ dz and [ 1dx
These are example of one kind of “improper integral”: called “improper” because we are

integrating over an “infinitely long” interval [1, 00) rather than over some interval of
finite length (such as [2, 7] for the integral f;%dx)

x

3/a

1/x

1/x2

We don't know how to do [~ 2;dz. The definition is that we do the thing that we do
know how to do first compute | fl%dx (representing the shaded area), then let t — oo.

t
o0 1 T t1 T 1 1 1 _
7 e = Jim [ Sede = Jim (= D] =Jim 1} =1
T

the shaded area

so we say that || 100 %da: exists because that limit exists. We also sometimes
express the same thing by saying that [~ % dx converges to value 1.

We can think of 1 as being (?paradoxically?) the area of the infinite region under
the graph of f(x) = - over the interval [1, co)



Now consider [, dav

5

3/a

1/x

1,"x2 \_’

1 2 t5 10

Using the same idea: we first compute || f% dx (representing the shaded area) and
thenlett — oo :

t
[*Lde =1im [/1dz=lim In|z| ‘ = lim Int, and this limit d.n.e.
L = t—00 1w t—o0 1 t—o0
T

the shaded area

Here, the limit doesn't exist (sincelnt — oo as t — 00). We say that the improper
integral || 100 Jl dx doesn't exist. Sometimes we express the same thing by saving [ 100%, dz
diverges.
An improper integral (see preceding example) is said to exist (converge) only
when the limit in its definition is a number. As in Math 131, we might write
limInt = oo as a way of saying why the limit doesn't exist, and therefore we might

t—00
write [~ 1 dz = oo as a way of expressing why [, 2dx doesn't exist.

| 100% dx = oo is a way of saying that the integral diverges in a certain way.

Geometrically, this all means that the area under f(z) = 1 over the interval [1, co)

doesn't exist (or we could say, area = oo). This is in sharp contrast to our calculation of
the area under -5 over [1.00).

Roughly you need to think the height of the graph # shrinks toward height O fast enough
that the area under the graph over [1,00) can come out a finite real number. But that the
height of % is higher and doesn't shrink fast enough for the area under the graph over
[1,00) to come out a finite number.



Try to retrain your intuition here: you should be comfortable with the integral
calculations from what we've already learned. then you try to “recalibrate” you intuition
about areas to take these new observations into account.



