
Error bound  for Simpson's Rule  )  even
|  where  must be chosen so that  on   

             


Q1:  If 4 on , then  ?            
 

A)  
   B)   C)  D)  

       
E  



Answer:   .   We are told that we can use            





So           
    

  
 

 

Q2:  We use Simpson's Rule with  to approximate             

We can then say that    ?               

A)   B)    C)    D)    E)   
    

Answer any cubic  For   (or  polynomial)         

 quadratic polynomial (degree 2)  
 linear polynomial (degree 1)  
 constant polynomial (“degree ”)   
and  f  iv   
So for this example (or any cubic polynomial)  we can choose  and get    

  (cubic polynomial)           





This says the magnitude of the error for Simpson's rule here, even with , is  so    
the error is meaning that ( )  (exactly!)     cubic polynomial

To illustrate with a numerically simpler example:    ( 
   

 
      exact value!)

and Simpson !  S “nails it” exactly!            
   



Example  Estimate and error using .  
        sin

     Calculate     


                      
      

     

   2.6046953633 ( rounded)
 :  Recall that for any numbers Estimate error  
          
 This also gives us
                    
 Some calculation (perhaps assisted by something like Wolfram Alpha) gives
 
  sin sin cos cos                  

iv sin

so taking  and using the inequalities above gives 
  sin sin cos cos                    

iv sin

Since sin  always, its guaranteed that  , so       
  

sin 

      
                

  

Therefore we can use to get  


  611753 ( , or               
  

sin 
 


  rounded)

so              611753       611753              sin
so
 611753   611753            

  sin
which works out to
   

 2.6046953633 611753 2.6046953633 611753          sin

 2.6046    2.604      sin

For comparison: to 5 decimal places, Wolfram Alpha (using who-knows-what method,
but likely very accurate rounded to 5 decimal) gives the value 2.60466 (   sin
places by default)     



Example  where approximating the integral is necessary because we don't have a formula
for the function we want to integrate, only graphical or numerical information.

 
The total amount leaked (New Change Theorem!) is  which we can approximate from the graph using, say  with =1:   
Visually estimate
  

 
 




 







Amount of water in tank at time   
    

  
Total amount leaked
 
                  

  L



The lecture ended with a brief introduction to one kind of improper integral
Consider   and    

  
   

These are example of one kind of “improper integral”: called “improper” because we are
integrating over an “infinitely long” interval  rather than over some interval of
finite length (such as  for the integral )   



  
We don't know how to do .  The definition is that we do the thing that we  

  do
know how to do first compute (representing the shaded area), then let  

    
 
       

   
    


          lim lim lim   

  
        
       the shaded area
 
 so we say that  exists   We also sometimes 

  because that limit exists.
 express the same thing by saying that   

  converges to value 
 We can think of  as being (?paradoxically?) the area of the infinite region under
 the graph of  over the interval   





Now consider  
 

  
Using the same idea: we first compute (representing the shaded area) and  then let    

   
  

      lim lim limln 
 ln , and this limit d.n.e.

       
       the shaded area
Here, the limit doesn't exist (since ln  as ).  We say that the improper     
integral   

  
   doesn't exist.  Sometimes we express the same thing by saving 

diverges.
 An improper integral (see preceding example) is said to  ( ) onlyexist converge
when the limit in its definition is a .  As in Math 131, we might writenumber

limln  as a way of saying  the limit doesn't exist, and therefore we might   why
write  as a way of expressing  doesn't exist.  

  
    why 

    is a way of saying that the integral  in a certain way.diverges

Geometrically, this all means that the  under over the interval area   
doesn't exist (or we could say, area .  This is in sharp contrast to our calculation of 

the area under  over 
 

Roughly you need to think the height of the graph  shrinks toward height   fast enough
 

that the area under the graph over  can come out a finite real number.  But that the
height of  is higher and doesn't shrink fast enough for the area under the graph over

 to come out a finite number.



Try to retrain your intuition here: you should be comfortable with the integral
calculations from what we've already learned.  then you try to “recalibrate” you intuition
about areas to take these new observations into account.


