Error bound E_{S} for Simpson's Rule (n even)

$$
\left.\mid \int_{a}^{b} f(x) d x-S_{n}\right) \leq \frac{K(b-a)^{5}}{180 n^{4}} \text { where } K \text { must be chosen so that }\left|f^{(i v)}(x)\right| \leq K \text { on }[a, b]
$$

Q1: If $\left|f^{(i v)}(x)\right| \leq 4$ on $[0,4]$, then $\left|\int_{0}^{4} f(x) d x-S_{4}\right| \leq$?
A) $\frac{4}{45} \approx 0.089$
B) $\frac{2}{45} \approx 0.044$
C) $\frac{7}{180} \approx 0.039$
D) $\frac{24}{180} \approx 0.133$
E) $\frac{28}{180} \approx 0.156$

Answer: $\quad\left|\int_{0}^{4} f(x) d x-S_{4}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}$. We are told that we can use $K=4$.
So $\left|\int_{0}^{4} f(x) d x-S_{4}\right| \leq \frac{4(4-0)^{5}}{180(4)^{4}}=\frac{4^{6}}{180\left(4^{4}\right)}=\frac{4^{2}}{180}=\frac{4}{45}$

Q2: We use Simpson's Rule with $n=2$ to approximate $\int_{-3}^{17} x^{3}-4 x^{2}+13 x-7 d x$.
We can then say that $\left|\int_{-3}^{17} x^{3}-4 x^{2}+13 x-7 d x-S_{2}\right| \leq ?$
A) $\frac{1}{20}$
B) $\frac{1}{10}$
C) $\frac{1}{5}$
D) $\frac{1}{2}$
E) 0

Answer For $f(x)=x^{3}-4 x^{2}+13 x-7$ (or any cubic polynomial)

$$
\begin{aligned}
& \left.f^{\prime}(x)=\text { quadratic polynomial (degree } 2\right) \\
& \left.f^{\prime \prime}(x)=\text { linear polynomial (degree } 1\right) \\
& f^{\prime \prime \prime}(x)=\text { constant polynomial ("degree } 0 \text { ") } \\
& \mathrm{f}^{(i v)}(x)=0
\end{aligned}
$$

and
So for this example (or \int_{a}^{b} (any cubic polynomial) $d x$) we can choose $K=0$, and get

$$
\mid \int_{a}^{b}(\text { cubic polynomial }) d x-S_{2} \left\lvert\, \leq \frac{0(b-a)^{5}}{180(2)^{2}}=0\right.
$$

This says the magnitude of the error for Simpson's rule here, even with $n=2$, is 0 : so the error is $0-$ meaning that \int_{a}^{b} (cubic polynomial $) d x=S_{2}$ (exactly!)

To illustrate with a numerically simpler example: $\int_{0}^{2} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{2}=\frac{16}{4}=4$ (exact value!) and Simpson $S_{2}=\frac{1}{3}\left(0^{3}+4(1)^{3}+2^{3}\right)=\frac{12}{3}=4$! S_{2} "nails it" exactly!

Example Estimate $\int_{1}^{2} f(x) d x=\int_{1}^{2} e^{\sin x} d x$ and error using S_{6}.
Calculate $S_{6}: \Delta x=\frac{1}{6}$

$$
\begin{aligned}
S_{6}=\frac{1 / 6}{3}(f(1) & \left.+4 f\left(\frac{7}{6}\right)+2 f\left(\frac{8}{6}\right)+4 f\left(\frac{9}{6}\right)+2 f\left(\frac{10}{6}\right)+4 f\left(\frac{11}{6}\right)+f\left(\frac{12}{6}\right)\right) \\
& =2.6046953633(\text { rounded })
\end{aligned}
$$

Estimate error: Recall that for any numbers a, b

$$
|a+b| \leq|a|+|b|
$$

This also gives us

$$
|a-b|=|a+(-b) \leq|a|+|(-b)|=|a|+|b|
$$

Some calculation (perhaps assisted by something like Wolfram Alpha) gives

$$
f^{(\mathrm{iv})}(x)=\frac{e^{\sin x}}{8}(-4 \sin x-12 \sin 3 x-24 \cos 2 x+\cos 4 x-1)
$$

so taking | | and using the inequalities above gives

$$
\left|f^{(\mathrm{iv})}(x)\right| \leq \frac{e^{\sin x}}{8}(4|\sin x|+12|\sin 3 x|+24|\cos 2 x|+|\cos 4 x|+1)
$$

Since $|\sin x| \leq 1$ always, its guaranteed that $\frac{e^{\sin x}}{8} \leq \frac{e^{1}}{8}=\frac{e}{8}$, so

$$
\leq \frac{e}{8}\left(4+12+24+1+1 \left\lvert\,=\frac{42 e}{8}=\frac{21 e}{4}\right.\right.
$$

Therefore we can use $K=\frac{21 e}{4}$ to get

SO

$$
\begin{aligned}
& \left|\int_{1}^{2} e^{\sin x} d x-S_{6}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}=\frac{\frac{21 e}{4}(2-1)^{5}}{180\left(6^{4}\right)}=.0000611753 \text { (rounded), or } \\
& -.0000611753 \leq \quad \int_{1}^{2} e^{\sin x} d x-S_{6} \quad \leq \quad .0000611753 \\
& S_{6}-.0000611753 \leq \quad \int_{1}^{2} e^{\sin x} d x \quad \leq S_{6}+.0000611753
\end{aligned}
$$

so
which works out to

$$
\begin{aligned}
& 2.6046953633-.0000611753 \leq \int_{1}^{2} e^{\sin x} d x \leq 2.6046953633+.0000611753 \\
& 2.6046341880 \leq \int_{1}^{2} e^{\sin x} d x \quad \leq 2.6047565386
\end{aligned}
$$

(For comparison: to 5 decimal places, Wolfram Alpha (using who-knows-what method, but likely very accurate) gives the value $\int_{1}^{2} e^{\sin x} d x=2.60466$ (rounded to 5 decimal places by default)

Example where approximating the integral is necessary because we don't have a formula for the function we want to integrate, only graphical or numerical information.

Water leaked from a tank at a rate of $r(t)$ liters per hour, where the graph of r is as shown. Use Simpson's Rule to estimate the total amount of water that leaked out during the first 6 hours.

The total amount leaked (New Change Theorem!) is $\int_{0}^{6} r(t) d t$ which we can approximate from the graph using, say $n=6$ with $\Delta x=1$:

Visually estimate

t	$r(t)$
0	4
1	3
2	$\frac{7}{3}$
3	$\frac{15}{8}$
4	$\frac{3}{2}$
5	$\frac{9}{8}$
6	1

Amount of water in tank at time $t: \quad A(t)$

$$
\frac{d A}{d t}=r(t)
$$

Total amount leaked

$$
=\int_{0}^{6} r(t) d t
$$

$$
\approx S_{6}=\frac{1}{3}(r(0)+4 r(1)+2 r(2)+4 r(3)+2 r(4)+4 r(5)+r(6)) \approx 12.2 \mathrm{~L}
$$

The lecture ended with a brief introduction to one kind of improper integral
Consider $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ and $\int_{1}^{\infty} \frac{1}{x} d x$
These are example of one kind of "improper integral": called "improper" because we are integrating over an "infinitely long" interval $[1, \infty)$ rather than over some interval of finite length (such as $[2,7]$ for the integral $\int_{2}^{7} \frac{1}{x^{2}} d x$)

We don't know how to do $\int_{1}^{\infty} \frac{1}{x^{2}} d x$. The definition is that we do the thing that we do know how to do first compute $\int_{1}^{t} \frac{1}{x^{2}} d x$ (representing the shaded area), then let $t \rightarrow \infty$.
so we say that $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ exists because that limit exists. We also sometimes express the same thing by saying that $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges to value 1.

We can think of 1 as being (?paradoxically?) the area of the infinite region under the graph of $f(x)=\frac{1}{x^{2}}$ over the interval $[1, \infty)$

Now consider $\int_{1}^{\infty} \frac{1}{x} d x v$

Using the same idea: we first compute $\int_{1}^{t} \frac{1}{x} d x$ (representing the shaded area) and then let $t \rightarrow \infty$:

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln t, \text { and this limit d.n.e. }
$$

\uparrow
the shaded area
Here, the limit doesn't exist (since $\ln t \rightarrow \infty$ as $t \rightarrow \infty$). We say that the improper integral $\int_{1}^{\infty} \frac{1}{x} d x$ doesn't exist. Sometimes we express the same thing by saving $\int_{1}^{\infty} \frac{1}{x} d x$ diverges.

An improper integral (see preceding example) is said to exist (converge) only when the limit in its definition is a number. As in Math 131, we might write
$\lim _{t \rightarrow \infty} \ln t=\infty$ as a way of saying why the limit doesn't exist, and therefore we might write $\int_{1}^{\infty} \frac{1}{x} d x=\infty$ as a way of expressing why $\int_{1}^{\infty} \frac{1}{x} d x$ doesn't exist.
$\int_{1}^{\infty} \frac{1}{x} d x=\infty$ is a way of saying that the integral diverges in a certain way.

Geometrically, this all means that the area under $f(x)=\frac{1}{x}$ over the interval $[1, \infty)$ doesn't exist (or we could say, area $=\infty$). This is in sharp contrast to our calculation of the area under $\frac{1}{x^{2}}$ over $[1 . \infty)$.

Roughly you need to think the height of the graph $\frac{1}{x^{2}}$ shrinks toward height 0 fast enough that the area under the graph over $[1, \infty)$ can come out a finite real number. But that the height of $\frac{1}{x}$ is higher and doesn't shrink fast enough for the area under the graph over $[1, \infty)$ to come out a finite number.

Try to retrain your intuition here: you should be comfortable with the integral calculations from what we've already learned. then you try to "recalibrate" you intuition about areas to take these new observations into account.

