Lecture 26

Reviewed the definition of limit of a sequence, using as first example  $\{a_n\}$ , where  $a_n = \frac{n}{n+1}$ 

**1 Definition** A sequence  $\{a_n\}$  has the **limit** *L* and we write

 $\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$ 

if we can make the terms  $a_n$  as close to L as we like by taking n sufficiently large. If  $\lim_{n\to\infty} a_n$  exists, we say the sequence **converges** (or is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**).

 $\{a_n\} = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots, \frac{10000}{10001}, \dots\}$ 

From the pattern, it seems clear that  $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{n+1} = 1$ ,

Suppose f(x) is a function for which  $f(n) = a_n$  for each n = 1, 2, 3... (so that the points (1, f(1)), (2, f(2)), ..., (n, f(n)), ... lie on the graph of f(x)) If  $\lim_{x \to \infty} f(x) = L$ , then the line y = L is a horizontal asymptote of f(x): the points (x, f(x)) on the graph approach height L as  $x \to \infty$ . In particular (letting x = n = 1, 2, 3, ...) the points  $(n, f(n)) = (n, a_n)$  approach height L. So

If 
$$\lim_{x \to \infty} f(x) = L$$
, then  $\lim_{n \to \infty} f(n) = \lim_{n \to \infty} a_n = L$ .

In the example above: let  $f(x) = \frac{x}{x+1}$ . Since (form Calc I)  $\lim_{x \to \infty} \frac{x}{x+1} = \lim_{x \to \infty} \frac{1}{1+\frac{1}{x}} = 1$ , it is also true that  $\lim_{n \to \infty} f(n) = \lim_{n \to \infty} \frac{n}{n+1} = 1$ .



Formal definition of limit of a sequence:

**2** Definition A sequence  $\{a_n\}$  has the limit L and we write  $\lim_{n \to \infty} a_n = L$  or  $a_n \to L$  as  $n \to \infty$ if for every  $\varepsilon > 0$  there is a corresponding integer N such that if n > N then  $|a_n - L| < \varepsilon$ 

In terms of this definition: to prove that

 $\lim_{n \to \infty} \frac{n}{n+1} = 1$  we'd say.

Let  $\epsilon > 0$  (for example, say  $\epsilon = 10^{-6}$ .

We want to make  $|a_n - 1| = |\frac{n}{n+1} - 1| = |\frac{-1}{n+1}| = \frac{1}{n+1} < \epsilon$  for all n > ?? = N.

Solving the inequality, we that this will be true if  $n+1 > \frac{1}{\epsilon}$ , that is, if  $n > \frac{1}{\epsilon} - 1$ 

(For a particular example, let  $\epsilon = 10^{-6}$ . Then

$$|a_n - 1| = |\frac{n}{n+1} - 1| < 10^{-6} \text{ if } n > N = \frac{1}{10^{-6}} - 1 = 10^6 + 1$$

Since we have shown that a N can be found for any  $\epsilon > 0$  (no matter hoew small is  $\epsilon$ ), the definition says that  $\lim_{n \to \infty} \frac{n}{n+1} = 1$ .

Does the sequence  $\{a_n\}$  converge (C) or diverge ? If it converges, what is the limit?

Q1: 
$$a_n = \frac{(-1)^n n}{n+1}$$

A) diverges B) converges. limit = 0 C) converges, limit = 1 D) converges, limit = 2 E) converges, limit =  $\sqrt{2}$ 

<u>Answer</u> Diverges. Informally,  $\{a_n\} = \{-\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \frac{6}{7}, ....\}$ The  $a_n$ 's do not approach any particular number L. (*in fact, the terms*  $a_1, a_3, a_5, ...$  get closer and closer to -1, but the terms  $a_2, a_4, a_6, ...$  get closer and closer to 1).

Q2: 
$$a_n = \sqrt{n+1} - \sqrt{n}$$

A) diverges B) converges. limit = 0 C) converges, limit = 1

D) converges, limit = 2 E) converges, limit =  $\sqrt{2}$ 

## Answer

We can let  $f(x) = \sqrt{x+1} - \sqrt{x}$ . Then (as in Calculus I)

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\sqrt{x+1} - \sqrt{x}}{1} \cdot \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0 \text{ (since the numerator is constant and the denominator } \to \infty)$ 

Of course, we could have just worked with n's and calculated  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sqrt{n+1} - \sqrt{n}}{1} \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \text{ etc.}$ 

Q3: 
$$a_n = \frac{\sqrt{2}n}{\sqrt{n^2 + 2^n}}$$

A) diverges B) converges. limit = 0 C) converges, limit = 1

D) converges, limit = 2 E) converges, limit =  $\sqrt{2}$ 

<u>Answer</u> Converges, limit = 0.

We can let  $f(x) = \frac{\sqrt{2}x}{\sqrt{x^2 + 2^x}}$  and calculate (as in Calc I)

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\sqrt{2}x}{\sqrt{x^2 + 2x}} = \lim_{x \to \infty} \frac{\sqrt{2}}{(\sqrt{x^2 + 2^x}/x)} = \lim_{x \to \infty} \frac{\sqrt{2}}{\sqrt{1 + \frac{2^x}{x^2}}}.$$

now, the virtue of shifting to f(x) rather than working with  $a_n$ :

$$\lim_{x \to \infty} \frac{2^x}{x^2} = (L'Hopital's Rule) \lim_{x \to \infty} \frac{2^x (\ln 2)}{2x} = (L'Hopital's Rule)$$
  
again) = 
$$\lim_{x \to \infty} \frac{2^x (\ln 2)^2}{2} = \infty$$

So the denominator  $\to \infty$  in  $\lim_{x \to \infty} \frac{\sqrt{2}}{\sqrt{1 + \frac{2^x}{x^2}}}$  so  $\lim_{x \to \infty} \frac{\sqrt{2}}{\sqrt{1 + \frac{2^x}{x^2}}} = 0.$ 

Therefore  $\lim_{n\to\infty} a_n = 0.$ 

We discussed two additional items:

## Squeeze Theorem for Limits of Sequences:

Suppose  $\{a_n\}, \{b_n\}, \{c_n\}$  are sequences and

that for each value of  $n: a_n \leq b_n \leq c_n$ 

If  $\lim_{n \to \infty} a_n = L$  and  $\lim_{n \to \infty} c_n = L$ , then If  $\lim_{n \to \infty} b_n = L$ 

<u>Theorem</u> For a sequence  $\{a_n\}$ , if  $\lim_{n\to\infty} |a_n| = 0$ , then  $\lim_{n\to\infty} a_n = 0$  also.

Why? Assume that  $\lim_{n\to\infty} |a_n| = 0$ . By the official definition, this means that for any  $\epsilon > 0$ , we can find an N such that  $||a_n| - 1| < \epsilon$  if n > N

But  $||a_n| - 0| = ||a_n|| = |a_n| = |a_n - 0|$ 

So  $|a_n - 0| < \epsilon$  if n > N and this is the definition of what it means to say that  $\lim_{n \to \infty} a_n = 0.$ 

Example Find  $\lim_{n\to\infty} a_n$ , where  $a_n = \frac{(-1)^n \sin n}{n}$ .

Look first at  $\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} |\frac{\sin n}{n}|$ 

Since  $0 \le \left|\frac{\sin n}{n}\right| \le \frac{1}{n}$ .

Using  $\{a_n\} = \{0, 0, 0, ...\}$  (constant sequence) and  $\{c_n\} = \{1, \frac{1}{2}, ..., \frac{1}{n}, ...\}$  in the Squeeze Theorem

we conclude that  $\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} |\frac{\sin n}{n}| = 0$  and therefore (by the Theorem)  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(-1)^n \sin n}{n} = 0$  also <u>Example</u> The preceding theorem <u>only applies for limit</u> = 0. For example,

(by Q1): 
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(-1)^n n}{n+1} \text{ does not exist, but (first example of lecture)}$$
$$\lim_{n \to \infty} |a_n| = = \lim_{n \to \infty} \frac{n}{n+1} = 1 \quad \text{(first example of lecture)}$$

We <u>cannot</u> use the theorem to say that because  $\lim_{n\to\infty} |a_n| = 1$ , then  $\lim_{n\to\infty} a_n = 1$  also !