Lecture 26
Reviewed the definition of limit of a sequence, using as first example $\left\{a_{n}\right\}$, where $a_{n}=\frac{n}{n+1}$

1 Definition A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).
$\left\{a_{n}\right\}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots \ldots, \frac{n}{n+1}, \ldots, \frac{10000}{10001}, \ldots\right\}$
From the pattern, it seems clear that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$,
Suppose $f(x)$ is a function for which $f(n)=a_{n}$ for each $n=1,2,3 \ldots$ (so that the points $(1, f(1)),(2, f(2)), \ldots,(n, f(n)), \ldots$ lie on the graph of $f(x))$ If $\lim _{x \rightarrow \infty} f(x)=L$, then the line $y=L$ is a horizontal asymptote of $f(x)$: the points $(x, f(x))$ on the graph approach height L as $x \rightarrow \infty$. In particular (letting $x=n=1,2,3, \ldots$) the points $(n, f(n))=\left(n, a_{n}\right)$ approach height L. So

$$
\text { If } \lim _{x \rightarrow \infty} f(x)=L \text {, then } \lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} a_{n}=L
$$

In the example above: let $f(x)=\frac{x}{x+1}$. Since (form Calc I) $\lim _{x \rightarrow \infty} \frac{x}{x+1}=\lim _{x \rightarrow \infty} \frac{1}{1+\frac{1}{x}}=1$, it is also true that $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$.

Formal definition of limit of a sequence:

2 Definition A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if for every $\varepsilon>0$ there is a corresponding integer N such that

$$
\text { if } \quad n>N \quad \text { then } \quad\left|a_{n}-L\right|<\varepsilon
$$

In terms of this definition: to prove that $\quad \lim _{n \rightarrow \infty} \frac{n}{n+1}=1$ we'd say.
Let $\epsilon>0$ (for example, say $\epsilon=10^{-6}$.
We want to make $\left|a_{n}-1\right|=\left|\frac{n}{n+1}-1\right|=\left|\frac{-1}{n+1}\right|=\frac{1}{n+1}<\epsilon$ for all $n>? ?=N$.
Solving the inequality, we that this will be true if $n+1>\frac{1}{\epsilon}$, that is, if $n>\frac{1}{\epsilon}-1$
(For a particular example, let $\epsilon=10^{-6}$. Then

$$
\left.\left|a_{n}-1\right|=\left|\frac{n}{n+1}-1\right|<10^{-6} \text { if } n>N=\frac{1}{10^{-6}}-1=10^{6}+1\right)
$$

Since we have shown that a N can be found for any $\epsilon>0$ (no matter hoe w small is ϵ), the definition says that $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$.

Does the sequence $\left\{a_{n}\right\}$ converge (C) or diverge ? If it converges, what is the limit?

Q1: $\quad a_{n}=\frac{(-1)^{n} n}{n+1}$
A) diverges
B) converges. limit $=0$
C) converges, limit $=1$
D) converges, limit $=2$
E) converges, limit $=\sqrt{2}$

Answer Diverges. Informally, $\left\{a_{n}\right\}=\left\{-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \frac{4}{5},-\frac{5}{6}, \frac{6}{7}, \ldots.\right\}$
The a_{n} 's do not approach any particular number L.. (in fact, the terms $a_{1}, a_{3}, a_{5}, \ldots$ get closer and closer to -1 , but the terms $a_{2}, a_{4}, a_{6}, \ldots$ get closer and closer to 1).

Q2: $\quad a_{n}=\sqrt{n+1}-\sqrt{n}$
A) diverges
B) converges. limit $=0$
C) converges, limit $=1$
D) converges, limit $=2$
E) converges, limit $=\sqrt{2}$

Answer

We can let $f(x)=\sqrt{x+1}-\sqrt{x}$. Then (as in Calculus I)
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\sqrt{x+1}-\sqrt{x}}{1} \cdot \frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x+1}+\sqrt{x}}=0$ (since the numerator is constant and the denominator $\rightarrow \infty$)

Of course, we could have just worked with n ' s and calculated
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n+1}-\sqrt{n}}{1} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=$ etc.

Q3: $\quad a_{n}=\frac{\sqrt{2} n}{\sqrt{n^{2}+2^{n}}}$
A) diverges
B) converges. limit $=0$
C) converges, limit $=1$
D) converges, limit $=2$
E) converges, limit $=\sqrt{2}$

Answer Converges, limit $=0$.
We can let $f(x)=\frac{\sqrt{2} x}{\sqrt{x^{2}+2^{x}}}$ and calculate (as in Calc I)

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\sqrt{2} x}{\sqrt{x^{2}+2 x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{2}}{\left(\sqrt{x^{2}+2^{x}} / x\right)}=\lim _{x \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{1+\frac{2^{x}}{x^{2}}}} .
$$

now, the virtue of shifting to $f(x)$ rather than working with a_{n} :

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2^{x}}{x^{2}} & =\left(L^{\prime} \text { Hopital's Rule) } \lim _{x \rightarrow \infty} \frac{2^{x}(\ln 2)}{2 x}=\left(L^{\prime} \text { Hopital's Rule },\right.\right. \\
\text { again }) & =\lim _{x \rightarrow \infty} \frac{2^{x}(\ln 2)^{2}}{2}=\infty
\end{aligned}
$$

So the denominator $\rightarrow \infty$ in $\lim _{x \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{1+\frac{2^{x}}{x^{2}}}}$ so $\lim _{x \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{1+\frac{2^{x}}{x^{2}}}}=0$.
Therefore $\lim _{n \rightarrow \infty} a_{n}=0$.

We discussed two additional items:

Squeeze Theorem for Limits of Sequences:

Suppose $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ are sequences and
that for each value of n : $a_{n} \leq b_{n} \leq c_{n}$
If $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} c_{n}=L$, then If $\lim _{n \rightarrow \infty} b_{n}=L$
Theorem For a sequence $\left\{a_{n}\right\}$, if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$ also.
Why? Assume that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. By the official definition, this means that for any $\epsilon>0$, we can find an N such that $\left|\left|a_{n}\right|-1\right|<\epsilon$ if $n>N$

But $\left|\left|a_{n}\right|-0\right|=\left|\left|a_{n}\right|\right|=\left|a_{n}\right|=\left|a_{n}-0\right|$
So $\left|a_{n}-0\right|<\epsilon$ if $n>N$ and this is the definition of what it means to say that $\lim _{n \rightarrow \infty} a_{n}=0$.

Example Find $\lim _{n \rightarrow \infty} \mathrm{a}_{n}$, where $a_{n}=\frac{(-1)^{n} \sin n}{n}$.
Look first at $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{\sin n}{n}\right|$
Since $0 \leq\left|\frac{\sin n}{n}\right| \leq \frac{1}{n}$.
Using $\left\{a_{n}\right\}=\{0,0,0, \ldots)$ (constant sequence) and $\left\{c_{n}\right\}=\left\{1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right\}$ in the Squeeze Theorem
we conclude that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{\sin n}{n}\right|=0$ and therefore (by the Theorem) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{(-1)^{n} \sin n}{n}=0$ also

Example The preceding theorem only applies for limit $\mathbf{= 0}$. For example,
(by Q1): $\quad \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{n+1}$ does not exist, but (first example of lecture)
$\lim _{n \rightarrow \infty}\left|a_{n}\right|==\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \quad$ (first example of lecture)
We cannot use the theorem to say that because $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$, then $\lim _{n \rightarrow \infty} a_{n}=1$ also !

