1 Definition A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

We say that
$\lim _{n \rightarrow \infty} a_{n}=\infty$ if whatever K is chosen, the a_{n} 's are eventually larger than K. ($\underline{\text { more precisely: }}$ if for any K, it's possible to find an N such that $a_{n}>K$ when $n>N$)
and that

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty \text { if whatever } k \text { is chosen, the } \mathrm{a}_{n} \text { 's are eventually smaller than } k .
$$

Assume $\quad a_{n} \rightarrow L$ as $n \rightarrow \infty$
and that $\quad f(x)$ is continuous at $x=L$:
then $f\left(a_{n}\right) \rightarrow f(L)$ as $n \rightarrow \infty$
Example Let $a_{n}=2+\frac{\pi}{2 n}$. Then $a_{n} \rightarrow 2$ as $n \rightarrow \infty$
Since $f(x)=\sqrt{\sin x}$ is continuous at 2 we can conclude that

$$
f\left(a_{n}\right)=\sqrt{\sin \left(2+\frac{\pi}{2 n}\right)} \rightarrow \sin 2 \text { as } n \rightarrow \infty
$$

Q1: Suppose $\lim _{n \rightarrow \infty} a_{n}=11$. What is $\lim _{n \rightarrow \infty} a_{n+3}$?
A) 8
B) 11
C) 14
D) 17
E) d.n.e.

Answer

The original sequence $\left\{a_{n}\right\}$ converges to 11: $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{8}, \ldots \longrightarrow 11$
The "new" sequence is the same as the original except that the first 3 terms are missing. For $n=1$, the first term of $\left\{a_{n+3}\right\}$ is a_{3+1}, the second term is a_{3+2}, etc.

So: original sequence $\quad a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7} a_{8, \ldots} \longrightarrow 11$

$$
\text { "new" sequence } \quad a_{4}, a_{5}, a_{7} a_{8}, \ldots \longrightarrow 11
$$

When a sequence converges to a limit L, this means that the terms of the sequence get closer and closer to $L: L$ is where the terms of the sequence are approaching as $n \rightarrow \infty$. The limit of a convergent sequence doesn't change if a finite number of terms at the beginning of the sequence are dropped. For example, above:

$$
a_{999}, a_{1000}, a_{1001}, a_{1002}, \ldots \longrightarrow 11
$$

Q2: If r is a constant and $|r|<1$: what is $\lim _{n \rightarrow \infty} \frac{7-7 r^{n}}{1-r}$?
A) r
B) 7
C) $\frac{1}{1-r}$ D) $\frac{7}{1-r}$ E) d.n.e.

Since $|r|<1, r^{n} \rightarrow 0$ as $n \rightarrow \infty$. (For example, $\left(\frac{3}{4}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$, and $\left(-\frac{1}{2}\right)^{n} \rightarrow 0$ as $\left.\rightarrow \infty\right)$. So $\quad \lim _{n \rightarrow \infty} \frac{7-7 r^{n}}{1-r}=\frac{7-0}{1-r}=\frac{7}{1-r}$.

A sequence $\left\{a_{n}\right)$
is increasing if $a_{1}<a_{2}<a_{3}<\ldots<a_{n}<a_{n+1}<\ldots$. (that is: $a_{n}<a_{n+1}$ for every n)
is decreasing if $a_{1}>{ }_{2}>_{3}>\ldots>a_{n}>a_{n+1}>\ldots .$.
(that is: $a_{n}>a_{n+1}$ for every n)

Example i) The sequence defined by $a_{n}=\left(\frac{1}{2}\right)^{n}$ is obviously decreasing
ii) (using algebra) Show that the sequence defined by $a_{n}=\frac{n-1}{n}$ is increasing we must show that $\quad a_{n}<a_{n+1}$ for every n we must show that $\quad \frac{n-1}{n}<\frac{(n+1)-1}{n+1}=\frac{n}{n+1}$ But $\quad \frac{n-1}{n}<\frac{n}{n+1}$ is equivalent to $n^{2}-1<n^{2}$, which is rue.
iii) (using a derivative) Is $a_{n}=\frac{\ln n-1}{n}$ increasing or decreasing (or neither)?

Let $f(x)=\frac{\ln x-1}{x}$.
Then $f^{\prime}(x)=\frac{x\left(\frac{1}{x}\right)-(\ln x-1)}{x^{2}}=\frac{2-\ln x}{x^{2}} \begin{cases}>0 & \text { if } x<e^{2} \\ =0 & \text { if } x=e^{2} \\ <0 & \text { if } x>e^{2}\end{cases}$

$$
\text { so } f(x) \text { is } \begin{cases}\text { increasing } & \text { if } 0<x<e^{2} \\ & \left(\text { local maximum at } x=e^{2}\right) \\ \text { decreasing } & \text { if } x>e^{2}\end{cases}
$$

Since $e^{2} \approx 7.39$, this tells us that
$f(1)<f(2<f(3), f(4)<f(5)<f(6)<f(7)$, then $f(8)>f(9)>f(10)>\ldots$ that is
$a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}<a_{7}$ then $a_{8}>a_{9}>a_{10}>\ldots>$ thereafter
(can we tell whether $a_{7}>a_{8}$ or $a_{7}<a_{8}$ without further calculation?)
So the sequence $\left\{\frac{\ln n-1}{n}\right\}$ is neither increasing nor decreasing. But since it is decreasing after the term a_{8}, we can say that the sequence is "eventually decreasing"

Just for information, here are the first 10 terms of the sequence, rounded to 4 decimal places:

$$
\begin{array}{ccc}
-1.0000<-0.1534<0.0329<0.0966<0.1219<0.1320 & <0.1351 \\
n=1 & & n=7 \\
& \\
& 0.1349>0.1330>0.1303>\ldots>\ldots & \\
& n=8 & n=10
\end{array}
$$

A sequence $\left\{a_{n}\right\}$ is
\swarrow called an upper bound for $\left\{a_{n}\right\}$
$\left\{\right.$ bounded above if there is a constant M (think big!) such that every $a_{n} \leq M$
bounded below if there is a constant m (think small!) such that $m \leq \underline{\text { every }} a_{n}$
\nwarrow called a lower bound for $\left\{a_{n}\right\}$
$\left\{a_{n}\right\}$ is bounded if it is both bounded above and below (so that every a_{n} is between m and M)

Example a) Let $a_{n}=\frac{1}{n}+1=\frac{1+n}{n}$
1 is a lower bound for $\left\{a_{n}\right\}-$ because $1 \leq a_{n}$ for every n
Any number smaller than 1 is also a lower bound. For example, $-\pi$ is a loner bound because $-\pi \leq a_{n}$ for every n.

1 is the greatest (largest) lower bound for $\left\{a_{n}\right\}$
For example, take any number greater than 1 , say $1.001=\frac{1001}{1000} .1 .001$ is not a lower bound because (just for example) $a_{10000}=1+\frac{1}{10000}=1.0001<1.001$.

2 is an upper since every $a_{n}=\frac{1}{n}+1 \leq 2$
Any number larger than 2 is also an upper bound. For example, 7 is an upper bound since $a_{n} \leq 7$ for every n.

2 is the least (smallest) upper bound, because every upper bound must be $\geq a_{1}=2$.
b) Let $a_{n}=\frac{1+n+\sin n}{n}$

Since $a_{n} \leq \frac{1+n+\sin n}{n}=\frac{1}{n}+1+\frac{\sin n}{n} \leq \frac{1}{n}+1+\frac{1}{n} \leq \frac{1}{1}+1+\frac{1}{1}=3$, 3 is an upper bound for $\left\{a_{n}\right\}$.

Since $a_{n}=\frac{1+n+\sin n}{n}=\frac{1}{n}+1+\frac{\sin n}{n} \geq \frac{1}{n}+1-\frac{1}{n} \geq 1$, 1 is a lower bound for $\left\{a_{n}\right\}$

Can you identify a least upper bound and greatest lower bound? (Sometimes this is not at all obvious.)

Completeness Property of the Real Numbers (a subtle, rather deep property):
i) an increasing sequence that has an upper bound must have a least upper bound
ii) an decreasing sequence that has a lower bound must have a greatest lower bound.

Monotone Sequence Theorem

a) an increasing sequence that has an upper bound must converge (in fact, the limit is the least upper bound of the sequence)
b) a decreasing sequence that has a lower bound must converge (in fact, the limit is the greatest lower bound of the sequence)

This theorem guarantees that certain sequences are convergent. Sometimes, when we know that a sequence converges, we can use that fact to find the limit.

Example (similar to one in textbook)
Let $a_{1}=2$ and define $a_{n+1}=\frac{1}{2}\left(a_{n}+8\right)$
The sequence is bounded above: I claim hat every $a_{n}<8$

$$
a_{1}<8
$$

Whenever $a_{n}<8$, then $a_{n+1}=\frac{1}{2}\left(a_{n}+8\right)<\frac{1}{2}(8+8)=8$
(so since we know $a_{1}<8$, it must be that $a_{2}<8$; now, since $a_{2}<*$, it must be true that $a_{3}<8$; etc. The "etc." shows why all $a_{n}<8$)

The sequence is increasing:

$$
a_{1}=2 \quad<\quad a_{2}=\frac{1}{2}\left(a_{1}+8\right)=5
$$

Whenever $\quad a_{n}<a_{n+1}$, then

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+8\right)<\frac{1}{2}\left(a_{n+1}+8\right)=a_{n+2}
$$

(so since we know $a_{1}<a_{2}$, it must be that $a_{2}<a_{3}$; now since $a_{2}<a_{3}$, it must be that $a_{3}<a_{4} ;$ etc. The etc." shows why $a_{n}<a_{n+1}$ for all n.)

By the monotone sequence theorem, there is a number L such that $\lim _{n \rightarrow \infty} a_{n}=L$. (Therefore $\lim _{n \rightarrow \infty} a_{n+1}=L$ also; see Cllicker Q1)

So $L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(a_{n}+8\right)=\frac{1}{2}(L+8)$
Therefore $L=\frac{1}{2}(L+8)$. We can then solve to get $L=8$.
(See the example in the textbook, and exercises 79-82 in section 11.1)

