1 Definition A sequence $\{a_n\}$ has the **limit** *L* and we write

$$\lim_{n\to\infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**).

We say that

 $\lim_{n \to \infty} a_n = \infty \text{ if whatever } K \text{ is chosen, the } a_n \text{'s are eventually larger than } K.$ $(\underline{\text{more precisely: if for any } K, \text{ it's possible to find an } N \text{ such that } a_n > K$ $(\underline{\text{when } n > N})$

and that

 $\lim_{n\to\infty} a_n = -\infty$ if whatever k is chosen, the a_n 's are eventually smaller than k.

Assume $a_n \to L \text{ as } n \to \infty$ and that f(x) is continuous at x = L: then $f(a_n) \to f(L)$ as $n \to \infty$ <u>Example</u> Let $a_n = 2 + \frac{\pi}{2n}$. Then $a_n \to 2$ as $n \to \infty$ Since $f(x) = \sqrt{\sin x}$ is continuous at 2 we can conclude that $f(a_n) = \sqrt{\sin (2 + \frac{\pi}{2n})} \to \sin 2$ as $n \to \infty$ Q1: Suppose $\lim_{n\to\infty} a_n = 11$. What is $\lim_{n\to\infty} a_{n+3}$?

A) 8 B) 11 C) 14 D) 17 E) d.n.e.

Answer

The original sequence $\{a_n\}$ converges to 11: $a_1, a_2, a_3, a_4, a_5, a_7, a_8, \dots \longrightarrow 11$

The "new" sequence is <u>the same</u> as the original except that the first 3 terms are missing. For n = 1, the first term of $\{a_{n+3}\}$ is a_{3+1} , the second term is a_{3+2} , etc.

So:	original sequence	$a_1,a_2,a_3,a_4,a_5,a_7a_{8,}$	$. \longrightarrow 11$
	"new" sequence	$a_4, a_5, a_7 a_{8,.}$	$\dots \longrightarrow 11$

When a sequence converges to a limit L, this means that the terms of the sequence get closer and closer to L : L is where the terms of the sequence are approaching as $n \to \infty$. The limit of a convergent sequence doesn't change if a finite number of terms at the beginning of the sequence are dropped. For example, above:

 $a_{999}, a_{1000}, a_{1001}, a_{1002}, \dots \longrightarrow 11$

Q2: If r is a constant and |r| < 1: what is $\lim_{n \to \infty} \frac{7 - 7r^n}{1 - r}$?

A) r B) 7 C) $\frac{1}{1-r}$ D) $\frac{7}{1-r}$ E) d.n.e.

Since |r| < 1, $r^n \to 0$ as $n \to \infty$. (For example, $(\frac{3}{4})^n \to 0$ as $n \to \infty$, and $(-\frac{1}{2})^n \to 0$ as $\to \infty$). So $\lim_{n \to \infty} \frac{7 - 7r^n}{1 - r} = \frac{7}{1 - r} = \frac{7}{1 - r}$.

A sequence $\{a_n\}$

is increasing if
$$a_1 < a_2 < a_3 < \dots < a_n < a_{n+1} < \dots$$
 (that is: $a_n < a_{n+1}$ for
every n)
is decreasing if $a_1 > 2 > 3 > \dots > a_n > a_{n+1} > \dots$ (that is: $a_n > a_{n+1}$ for
every n)

<u>Example</u> i) The sequence defined by $a_n = (\frac{1}{2})^n$ is obviously decreasing

ii) (using algebra) Show that the sequence defined by $a_n = \frac{n-1}{n}$ is increasing

we must show that we must show that	$a_n < a_{n+1} ext{ for every } n$ $rac{n-1}{n} < rac{(n+1)-1}{n+1} = rac{n}{n+1}$
But	$\frac{n-1}{n} < \frac{n}{n+1}$ is equivalent to
	$n^2 - 1 < n^2$, which is rue.

iii) (using a derivative) Is $a_n = \frac{\ln n - 1}{n}$ increasing or decreasing (or neither)? Let $f(x) = \frac{\ln x - 1}{x}$.

Then
$$f'(x) = \frac{x(\frac{1}{x}) - (\ln x - 1)}{x^2} = \frac{2 - \ln x}{x^2} \begin{cases} > 0 & \text{if } x < e^2 \\ = 0 & \text{if } x = e^2 \\ < 0 & \text{if } x > e^2 \end{cases}$$

so f(x) is $\begin{cases}
\text{increasing} & \text{if } 0 < x < e^2 \\
\text{(local maximum at } x = e^2) \\
\text{decreasing} & \text{if } x > e^2
\end{cases}$

Since $e^2 \approx 7.39$, this tells us that

 $f(1) < f(2 < f(3), f(4) < f(5) < f(6) < f(7), \mbox{ then } f(8) > f(9) > f(10) > \dots \mbox{ that is }$

 $a_1 < a_2 < a_3 < a_4 < a_5 < a_6 < a_7$ then $a_8 > a_9 > a_{10} > \dots >$ thereafter

(can we tell whether $a_7 > a_8$ or $a_7 < a_8$ without further calculation?)

So the sequence $\{\frac{\ln n - 1}{n}\}$ is neither increasing nor decreasing. But since it is decreasing after the term a_8 , we can say that the sequence is "eventually decreasing"

Just for information, here are the first 10 terms of the sequence, rounded to 4 decimal places:

 $\begin{array}{c} -1.0000 < -0.1534 < 0.0329 < 0.0966 < 0.1219 < 0.1320 < 0.1351 \\ n=1 \\ 0.1349 > 0.1330 > 0.1303 > \ldots > \ldots \end{array}$

n = 8 n = 10

A sequence $\{a_n\}$ is

 $\swarrow \text{ called an <u>upper bound</u> for <math>\{a_n\}$ $\left\{ \begin{array}{l} \underline{bounded \ above} \text{ if there is a constant } M \ (think \ big!) \text{ such that } \underline{every} \ a_n \leq M \\ \underline{bounded \ below} \text{ if there is a constant } m \ (think \ small!) \text{ such that } m \leq \underline{every} \ a_n \\ \underline{\frown} \ \text{ called a } \underline{lower \ bound} \text{ for } \{a_n\} \\ \end{array} \right.$

 $\{a_n\}$ is <u>bounded</u> if it is <u>both</u> bounded above and below (so that <u>every</u> a_n is between m and M)

Example a) Let $a_n = \frac{1}{n} + 1 = \frac{1+n}{n}$

1 is a lower bound for $\{a_n\}$ - because $1 \le a_n$ for every nAny number smaller than 1 is also a lower bound. For example, $-\pi$ is a loner bound because $-\pi \le a_n$ for every n.

1 is the greatest (largest) lower bound for $\{a_n\}$

For example, take <u>any</u> number greater than 1, say $1.001 = \frac{1001}{1000}$. 1.001 is <u>not a lower</u> <u>bound</u> because (just for example) $a_{10000} = 1 + \frac{1}{10000} = 1.0001 < 1.001$.

2 is an upper since every $a_n = \frac{1}{n} + 1 \le 2$ Any number <u>larger than</u> 2 is also an upper bound. For example, 7 is an upper bound since $a_n \le 7$ for every n.

2 is the <u>least</u> (<u>smallest</u>) upper bound, because every upper bound must be $\geq a_1 = 2$.

b) Let $a_n = \frac{1+n+\sin n}{n}$

Since $a_n \leq \frac{1+n+\sin n}{n} = \frac{1}{n} + 1 + \frac{\sin n}{n} \leq \frac{1}{n} + 1 + \frac{1}{n} \leq \frac{1}{1} + 1 + \frac{1}{1} = 3$, 3 is an upper bound for $\{a_n\}$.

Since $a_n = \frac{1+n+\sin n}{n} = \frac{1}{n} + 1 + \frac{\sin n}{n} \ge \frac{1}{n} + 1 - \frac{1}{n} \ge 1$, 1 is a lower bound for $\{a_n\}$

Can you identify a least upper bound and greatest lower bound? (Sometimes this is not at all obvious.)

Completeness Property of the Real Numbers (a subtle, rather deep property):

i) an increasing sequence that has an upper bound must have a least upper bound

ii) an decreasing sequence that has a lower bound must have a greatest lower bound.

Monotone Sequence Theorem

a) an increasing sequence that has an upper bound must converge (*in fact, the limit is the least upper bound of the sequence*)

b) a decreasing sequence that has a lower bound must converge (*in fact, the limit is the greatest lower bound of the sequence*)

This theorem guarantees that certain sequences are convergent. Sometimes, when we know that a sequence converges, we can use that fact to find the limit.

Example (similar to one in textbook)

Let $a_1 = 2$ and define $a_{n+1} = \frac{1}{2}(a_n + 8)$

The sequence is bounded above: I claim hat every $a_n < 8$

 $a_1 < 8$ Whenever $a_n < 8$, then $a_{n+1} = \frac{1}{2}(a_n + 8) < \frac{1}{2}(8 + 8) = 8$

(so since we know $a_1 < 8$, it must be that $a_2 < 8$; now, since $a_2 < *$, it must be true that $a_3 < 8$; etc. The "etc." shows why all $a_n < 8$)

The sequence is increasing:

 $a_1 = 2$ < $a_2 = \frac{1}{2}(a_1 + 8) = 5$

Whenever $a_n < a_{n+1}$, then $a_{n+1} = \frac{1}{2}(a_n + 8) < \frac{1}{2}(a_{n+1} + 8) = a_{n+2}$

(so since we know $a_1 < a_2$, it must be that $a_2 < a_3$; now since $a_2 < a_3$, it must be that $a_3 < a_4$; etc. The etc." shows why $a_n < a_{n+1}$ for all n.)

By the monotone sequence theorem, there <u>is</u> a number L such that $\lim_{n\to\infty} a_n = L$. (*Therefore* $\lim_{n\to\infty} a_{n+1} = L$ also; see Cllicker Q1)

So $L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2}(a_n + 8) = \frac{1}{2}(L+8)$

Therefore $L = \frac{1}{2}(L+8)$. We can then solve to get L = 8.

(See the example in the textbook, and exercises 79-82 in section 11.1)