<u>Example</u> The series $\sum_{n=1}^{\infty} \frac{1}{n^4}$ converges by the integral test. Suppose $\sum_{n=1}^{\infty} \frac{1}{n^4} = s$. We can't find *s* exactly with what we know, but we can approximate *s* using one of the partial sums s_n . How large should *n* be so that the approximation error $s - s_n < 10^{-6}$?

In the <u>last lecture</u>, we learned that (in the integral test) $s - s_n = R_n < \int_n^\infty f(x) dx$

So, in this example, we want to choose n so that

$$s - s_n = R_n < \int_n^\infty \frac{1}{x^4} dx = \lim_{t \to \infty} -\frac{1}{3x^3} \Big|_n^\infty = \frac{1}{3n^3} < 10^{-6}$$

so we need $3n^3 > 10^6$, that is $n > \sqrt[3]{\frac{10^6}{3}} \approx 69.3$, so n = 70 will work.

 $s - s_{70} < 10^{-6}$, and (at least with enough work, or a computers help) we can actually compute s_{70} .

From the last lecture:

Comparison test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series where all $a_n > 0$ and all $b_n > 0$ Suppose $a_n \le b_n$ for all n. Then

• if
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} b_n$ also diverges

• if
$$\sum_{n=1}^{\infty} b_n$$
 converges, then $\sum_{n=1}^{\infty} a_n$ also converges

Note: it's not necessary that the series begin with n = 1*. The comparison test works equally well if the series are* $\sum_{n=k}^{\infty} a_n$ and $\sum_{n=k}^{\infty} b_n$

Q1: You can decide that $\sum_{n=7}^{\infty} \frac{1}{n-3}$ diverges by comparing it to which of the following series?

A)
$$\sum_{n=7}^{\infty} \frac{1}{n-4}$$
 B) $\sum_{n=7}^{\infty} \frac{1}{n-2}$ C) $\sum_{n=7}^{\infty} \frac{1}{n-1}$ D) $\sum_{n=7}^{\infty} \frac{1}{n}$ E) $\sum_{n=7}^{\infty} \frac{1}{n+1}$

<u>Answer</u> for n > 7: n - 3 < n, so $\frac{1}{n-3} > \frac{1}{n}$. Since $\sum_{n=7}^{\infty} \frac{1}{n}$ diverges $(=\infty)$, the larger series $\sum_{n=7}^{\infty} \frac{1}{n-3}$ also diverges by the comparison test.

<u>Example</u> For which the following two series can we decide convergence or divergence by a comparison to the series $\sum_{n=2}^{\infty} \frac{1}{7^n}$?

$$\sum_{n=2}^{\infty} \frac{1}{7^n + 2n} \qquad \qquad \sum_{n=2}^{\infty} \frac{1}{7^n - 2n}$$

$$egin{array}{lll} 7^n+2n>7^n&7^n-2n<\ rac{1}{7^n+2n}&<rac{1}{7^n}&rac{1q}{7^n-2n}<rac{1}{7^n} \end{array}$$

so

so
$$\sum_{n=2}^{\infty} \frac{1}{7^n + 2n} \le \sum_{n=2}^{\infty} \frac{1}{7^n}$$
 $\sum_{n=2}^{\infty} \frac{1}{7^n - 2n} \ge \sum_{n=2}^{\infty} \frac{1}{7^n}$

Since $\sum_{n=2}^{\infty} \frac{1}{7^n}$ converges (it's a geometric series, $r = \frac{1}{7}$) the smaller series $\sum_{n=2}^{\infty} \frac{1}{7^n + 2n}$ must also converge by the comparison test; no conclusion about $\sum_{n=2}^{\infty} \frac{1}{7^n - 2n}$ is possible from the second comparison.

 7^n

Our intuition should tell us, however, that for very large n, 7^n is <u>much larger than</u> 2n, so that $\frac{1}{7^n-2n}$ isn't much different from $\frac{1}{7^n}$. So we might "guess" that $\sum_{n=2}^{\infty} \frac{1}{7^n-2n}$ also converges – perhaps some other comparison would work. We'll decide about this series later in the lecture.

<u>Example</u> Does $\sum_{n=1}^{\infty} \frac{1}{n^{\ln n}}$ converge or diverge?

Thinking of other series, we know that when p is <u>constant</u>, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1. For example, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. But when n is "large enough" $\ln n$ will be > 2 – so, when n is "large enough" $n^{\ln n} > n^2$ and $\frac{1}{n^{\ln n}} < \frac{1}{n^2}$. So we try to compare $\sum_{n=1}^{\infty} \frac{1}{n^{\ln n}}$ to compare $\sum_{n=1}^{\infty} \frac{1}{n^2}$ more carefully:

 $\ln e^2 = 2 \text{ and } e^2 \approx 7.39, \ \text{ so } \ln n > 2 \text{ when } n \geq 8$

So when $n \ge 8$: $n^{\ln n} > n^2$ and $\frac{1}{n^{\ln n}} < \frac{1}{n^2}$.

Therefore $\sum_{n=8}^{\infty} \frac{1}{n^{\ln n}} \le \sum_{n=8}^{\infty} \frac{1}{n^2}$. Since $\sum_{n=8}^{\infty} \frac{1}{n^2}$, so does the smaller series $\sum_{n=8}^{\infty} \frac{1}{n^{\ln n}}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{\ln n}} = \sum_{n=1}^{7} \frac{1}{n^{\ln n}} + \sum_{n=8}^{\infty} \frac{1}{n^{\ln n}}$, $\sum_{n=1}^{\infty} \frac{1}{n^{\ln n}}$ must converge.

Given $\sum_{n=1}^{\infty} a_n$ (with $a_n > 0$), the limit comparison test often is easier to use than the comparison test – usually there is no need to manipulate inequalities – although you still need to guess/pick a series $\sum_{n=1}^{\infty} b_n$ whose behavior you know to compare to $\sum_{n=1}^{\infty} a_n$.

The Limit Comparison Test

Suppose a_n and $b_n > 0$ for all n. Consider the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$

If $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ where $L \neq 0, L \neq \infty$ then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ <u>either</u> both converge <u>or</u> both diverge

A justification is given in the textbook and was given in the lecture. Again, it doesn't matter whether the two series begin with n = 1 or not.

<u>Example</u> Earlier, we guessed that $\sum_{n=2}^{\infty} \frac{1}{7^n - 2n}$ probably behaves the same as $\sum_{n=2}^{\infty} \frac{1}{7^n}$ (converges). We can use the limit comparison test to justify this:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/(7^n - 2n)}{1/7^n} = \lim_{n \to \infty} \frac{7^n}{7^n - 2n} = \lim_{n \to \infty} \frac{1}{1 - \frac{2n}{7^n}} = 1.$$

By the limit comparison test, $\sum_{n=2}^{\infty} \frac{1}{7^n - 2n}$ converges because $\sum_{n=2}^{\infty} \frac{1}{7^n}$ converges.

Q2: Using the Limit Comparison Test, we can decide that both of the following series have the same behavior: converge or diverge?

$$\sum_{n=2}^{\infty} \frac{1}{e^n + 5n + 1} \qquad \qquad \sum_{n=2}^{\infty} \frac{1}{e^n - 1}$$

A) Both Converge B) Both diverge

<u>Answer</u> Use the limit comparison test:

$$\lim_{n \to \infty} \frac{1/(e^n - 1)}{1/(e^n + 5n + 1)} = \lim_{n \to \infty} \frac{e^n + 5n + 1}{e^n - 1} = \lim_{n \to \infty} \frac{1 + \frac{5n}{e^n} + \frac{1}{e^n}}{1 - \frac{1}{e^n}} = 1.$$

So both series diverge or both series converge.

If we use the limit comparison test again, we can see that $\sum_{n=2}^{\infty} \frac{1}{e^n - 1}$ and $\sum_{n=2}^{\infty} \frac{1}{e^n}$ both converge or both diverge: $\lim_{n \to \infty} \frac{1/(e^n - 1)}{1/e^n} = \lim_{n \to \infty} \frac{e^n}{e^n - 1}$

 $=\lim_{n\to\infty}\frac{1}{1-\frac{1}{e^n}}=1.$ Since $\sum_{n=2}^{\infty}\frac{1}{e^n}$ is a geometric series with $r=\frac{1}{e}<1$, it converges.

Therefore $\sum_{n=2}^{\infty} \frac{1}{e^n + 5n + 1}$ and $\sum_{n=2}^{\infty} \frac{1}{e^n - 1}$ both converge.