Example The series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ converges by the integral test. Suppose $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=s$. We can't find s exactly with what we know, but we can approximate s using one of the partial sums s_{n}. How large should n be so that the approximation error $s-s_{n}<10^{-6}$?

In the last lecture, we learned that (in the integral test) $s-s_{n}=R_{n}<\int_{n}^{\infty} f(x) d x$ So, in this example, we want to choose n so that

$$
s-s_{n}=R_{n}<\int_{n}^{\infty} \frac{1}{x^{4}} d x=\lim _{t \rightarrow \infty}-\left.\frac{1}{3 x^{3}}\right|_{n} ^{\infty}=\frac{1}{3 n^{3}}<10^{-6}
$$

so we need $3 n^{3}>10^{6}$, that is $n>\sqrt[3]{\frac{10^{6}}{3}} \approx 69.3$, so $n=70$ will work.
$s-s_{70}<10^{-6}$, and (at least with enough work, or a computers help) we can actually compute s_{70}.

From the last lecture:
Comparison test: Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series where all $a_{n}>0$ and all $b_{n}>0$ Suppose $a_{n} \leq b_{n}$ for all n. Then

- if $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ also diverges
- if $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges

Note: it's not necessary that the series begin with $n=1$. The comparison test works equally well if the series are $\sum_{n=k}^{\infty} a_{n}$ and $\sum_{n=k}^{\infty} b_{n}$

Q1: You can decide that $\sum_{n=7}^{\infty} \frac{1}{n-3}$ diverges by comparing it to which of the following series?
A) $\sum_{n=7}^{\infty} \frac{1}{n-4}$
B) $\sum_{n=7}^{\infty} \frac{1}{n-2}$
C) $\sum_{n=7}^{\infty} \frac{1}{n-1}$
D) $\sum_{n=7}^{\infty} \frac{1}{n}$
E) $\sum_{n=7}^{\infty} \frac{1}{n+1}$

Answer for $n>7: n-3<n$, so $\frac{1}{n-3}>\frac{1}{n}$. Since $\sum_{n=7}^{\infty} \frac{1}{n}$ diverges $(=\infty)$, the larger series $\sum_{n=7}^{\infty} \frac{1}{n-3}$ also diverges by the comparison test.

Example For which the following two series can we decide convergence or divergence by a comparison to the series $\sum_{n=2}^{\infty} \frac{1}{7^{n}}$?

$$
\begin{array}{ll}
& \sum_{n=2}^{\infty} \frac{1}{7^{n}+2 n} \\
& \sum_{n=2}^{\infty} \frac{1}{7^{n}-2 n} \\
\text { so } & 7^{n}+2 n>7^{n} \\
\text { so } & \frac{1}{7^{n}+2 n}<\frac{1}{7^{n}} \\
\sum_{n=2}^{\infty} \frac{1}{7^{n}+2 n} \leq \sum_{n=2}^{\infty} \frac{1}{7^{n}} & \sum_{n=2}^{\infty} \frac{1 q}{7^{n}-2 n}<\frac{1}{7^{n}}
\end{array}
$$

Since $\sum_{n=2}^{\infty} \frac{1}{7^{n}}$ converges (it's a geometric series, $r=\frac{1}{7}$) the smaller series $\sum_{n=2}^{\infty} \frac{1}{7^{n}+2 n} \quad$ must also converge by the comparison test; no conclusion about $\sum_{n=2}^{\infty} \frac{1}{7^{n}-2 n}$ is possible from the second comparison.

Our intuition should tell us, however, that for very large $n, 7^{n}$ is much larger than $2 n$, so that $\frac{1}{7^{n}-2 n}$ isn't much different from $\frac{1}{7^{n}}$. So we might "guess" that $\sum_{n=2}^{\infty} \frac{1}{7^{n}-2 n}$ also converges - perhaps some other comparison would work. We'll decide about this series later in the lecture.
$\underline{\text { Example Does } \sum_{n=1}^{\infty} \frac{1}{n^{\ln n}} \text { converge or diverge? }}$
Thinking of other series, we know that when p is constant, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $p>1$.
For example, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. But when n is "large enough" $\ln n$ will be $>2-$ so, when n is "large enough" $n^{\ln n}>n^{2}$ and $\frac{1}{n^{\ln n}}<\frac{1}{n^{2}}$. So we try to compare $\sum_{n=1}^{\infty} \frac{1}{n^{\ln n}}$ to compare $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ more carefully:
$\ln e^{2}=2$ and $e^{2} \approx 7.39$, so $\ln n>2$ when $n \geq 8$
So when $n \geq 8: \quad n^{\ln n}>n^{2}$ and $\frac{1}{n^{\ln n}}<\frac{1}{n^{2}}$.
Therefore $\quad \sum_{n=8}^{\infty} \frac{1}{n^{\ln n}} \leq \sum_{n=8}^{\infty} \frac{1}{n^{2}}$. Since $\sum_{n=8}^{\infty} \frac{1}{n^{2}}$, so does the smaller series $\sum_{n=8}^{\infty} \frac{1}{n^{1 n n}}$.
Since $\sum_{n=1}^{\infty} \frac{1}{n^{\ln n}}=\sum_{n=1}^{7} \frac{1}{n^{\ln n}}+\sum_{n=8}^{\infty} \frac{1}{n^{\ln n}}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{\ln n}}$ must converge.

Given $\sum_{n=1}^{\infty} a_{n}$ (with $a_{n}>0$), the limit comparison test often is easier to use than the comparison test - usually there is no need to manipulate inequalities - although you still need to guess/pick a series $\sum_{n=1}^{\infty} b_{n}$ whose behavior you know to compare to $\sum_{n=1}^{\infty} a_{n}$.

The Limit Comparison Test

Suppose a_{n} and $b_{n}>0$ for all n. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$
If $\quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ where $L \neq 0, L \neq \infty$
then $\quad \sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge
A justification is given in the textbook and was given in the lecture. Again, it doesn't matter whether the two series begin with $n=1$ or not.

Example Earlier, we guessed that $\sum_{n=2}^{\infty} \frac{1}{7^{n}-2 n}$ probably behaves the same as $\sum_{n=2}^{\infty} \frac{1}{7^{n}}$ (converges). We can use the limit comparison test to justify this:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 /\left(7^{n}-2 n\right)}{1 / 7^{n}}=\lim _{n \rightarrow \infty} \frac{7^{n}}{7^{n}-2 n}=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{2 n}{T^{n}}}=1 .
$$

By the limit comparison test, $\sum_{n=2}^{\infty} \frac{1}{7^{n}-2 n}$ converges because $\sum_{n=2}^{\infty} \frac{1}{7^{n}}$ converges.

Q2: Using the Limit Comparison Test, we can decide that both of the following series have the same behavior: converge or diverge?

$$
\sum_{n=2}^{\infty} \frac{1}{e^{n}+5 n+1} \quad \sum_{n=2}^{\infty} \frac{1}{e^{n}-1}
$$

A) Both Converge
B) Both diverge

Answer Use the limit comparison test:

$$
\lim _{n \rightarrow \infty} \frac{1 /\left(e^{n}-1\right)}{1 /\left(e^{n}+5 n+1\right)}=\lim _{n \rightarrow \infty} \frac{e^{n}+5 n+1}{e^{n}-1}=\lim _{n \rightarrow \infty} \frac{1+\frac{5 n}{e^{n}}+\frac{1}{e^{n}}}{1-\frac{1}{e^{n}}}=1 .
$$

So both series diverge or both series converge.
If we use the limit comparison test again, we can see that $\sum_{n=2}^{\infty} \frac{1}{e^{n}-1}$ and $\sum_{n=2}^{\infty} \frac{1}{e^{n}}$ both converge or both diverge: $\lim _{n \rightarrow \infty} \frac{1 /\left(e^{n}-1\right)}{1 / e^{n}}=\lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n}-1}$
$=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{1}{e^{n}}}=1$. Since $\sum_{n=2}^{\infty} \frac{1}{e^{n}}$ is a geometric series with $r=\frac{1}{e}<1$, it converges.
Therefore $\sum_{n=2}^{\infty} \frac{1}{e^{n}+5 n+1}$ and $\sum_{n=2}^{\infty} \frac{1}{e^{n}-1}$ both converge.

