We reviewed the comparison test and the limit comparison test. Note that these tests, and the earlier integral test, only are valid for series with positive terms a_{n}

Comparison test: Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series where all $a_{n}>0$ and all $b_{n}>0$ Suppose $a_{n} \leq b_{n}$ for all n. Then

- if $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ also diverges
- if $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges

The Limit Comparison Test

Suppose a_{n} and $b_{n}>0$ for all n. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$

If $\quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ where $L \neq 0 . L \neq \infty$
then $\quad \sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n} \underline{\text { either both converge or both diverge }}$

Q1: (Comparison Test): The series $\sum_{n=1}^{\infty} \frac{1}{n!}$
A) $\sum_{n=1}^{\infty} \frac{1}{n!}$ diverges because $\frac{1}{n!}>\frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ diverges
B) $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $\frac{1}{n!}>\frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges
C) $\sum_{n=1}^{\infty} \frac{1}{n!}$ diverges because $\frac{1}{n!}<\frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges
D) $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $\frac{1}{n!}<\frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges
E) $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $\frac{1}{n!}<\frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ diverges

Answer $\frac{1}{n!}=\frac{1}{1 \cdot 2 \cdot 3 \cdots \cdots(n-1) \cdot n}=\frac{1 \cdot 1 \cdot 1 \cdot}{1 \cdot 2 \cdot 3 \cdots \cdots \cdot 1 \cdot 1}(n-1) \cdot n$

$$
<\frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2^{n-1}}
$$

So $\sum_{n=1}^{\infty} \frac{1}{n!} \leq \sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$. Since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges (geometric series, $r=\frac{1}{2}$). $\sum_{n=1}^{\infty} \frac{1}{n!}$ must also converge by the Comparison Test.

Q2: You can use the Limit Comparison Test to decide that $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$
A) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ diverges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{n}$
B) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ converges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{n}$
C) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ diverges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$
D) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ converges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$
E) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ converges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$

For very large n, the terms $a_{n}=\frac{1}{n \sqrt{n^{2}-1}}$ are approximately the same as $\frac{1}{n \sqrt{n^{2}}}=\frac{1}{n^{2}}$, so I'm guessing that $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ behaves like $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$. To check out this guess, I use the Limit Comparison Test:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1 /\left(n \sqrt{n^{2}-1}\right)}{1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n \sqrt{n^{2}-1}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}-1}}=\lim _{n \rightarrow \infty} \frac{1}{\left(\sqrt{n^{2}-1}\right) / n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1-1 / n^{2}}}=1 .
\end{aligned}
$$

By the Limit Comparison Test, $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$ converges because $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges.

Example: $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

$$
\begin{aligned}
& \frac{n!}{n^{n}}=\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \cdots \cdots \cdot \frac{n-1}{n} \cdot \frac{n}{n} \quad(\text { for } n \geq 3, \text { each red fraction is } \leq 1) \\
& \quad \leq \frac{1}{n} \cdot \frac{2}{n} \cdot 1 \cdot 1 \cdots \quad 1 \cdot 1=\frac{2}{n^{2}}
\end{aligned}
$$

Since $\sum_{n=3}^{\infty} \frac{2}{n^{2}}$ converges, $\sum_{n=3}^{\infty} \frac{n!}{n^{n}}$ converges by the Comparison Test, so $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ also converges.

Note I could have written

$$
\begin{aligned}
\frac{n!}{n^{n}} & =\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \cdots \cdots \cdot \frac{n-1}{n} \cdot \frac{n}{n} \quad(\text { for } n \geq 2, \text { each blue fraction is } \leq 1) \\
& \leq \frac{1}{n} \cdot 1 \cdot 1 \cdot 1 \cdots \quad 1 \cdot 1=\frac{1}{n}
\end{aligned}
$$

This would then tell me that $\sum_{n=2}^{\infty} \frac{n!}{n^{n}} \leq \sum_{n=2}^{\infty} \frac{1}{n}$ which is true but not a useful comparison since the larger series $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges.

We now start looking at some tests for series where not all the terms are positive. The simplest kind of series with "mixed signs" is an alternating series:

$$
\begin{align*}
& b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots \tag{*}\\
\text { (or) } \quad & -b+b_{2}-b_{3}+b_{4}-b_{5}+b_{6}-\cdots \tag{**}
\end{align*}
$$

Here, we are assuming that the b_{n} 's themselves are all positive, so that the " + " and " - " signs cause the signs to alternate (For example, if b_{2} were itself negative, then $-b_{2}$ in (*) would positive and there would be no alternation of signs between the first term and the second.)

Alternating Series Test

Suppose

$$
\begin{aligned}
& \text { all } b_{n} \text { 's }>0 \\
& \lim _{n \rightarrow \infty} b_{n}=0 \\
& b_{n} \text { is a decreasing sequence }\left(\text { each } b_{n}>b_{n+1}\right)
\end{aligned}
$$

and

Then the alternating series

$$
\begin{array}{r}
b_{1}-b_{2}+b_{3}-b_{4}+\cdots \\
-b_{1}+b_{2}-b_{3}+b_{4}-\cdots \tag{**}
\end{array}
$$

converges.
If an alternating series converges and has sum s, then we can approximate s with a partial sum s_{n} and the error $s-s_{n}$ satisfies

$$
\left|s-s_{n}\right|<b_{n+1}\left(=\begin{array}{c}
\text { the magnitude of the first "ignored" } \\
\text { term in the sum })
\end{array}\right.
$$

Example $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots$
Here, $b_{n}=\frac{1}{n}$. Since $b_{n}>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} b_{n}=0 \text { and } \\
& b_{n}>b_{n+1}
\end{aligned}
$$

the Altenating Series Test applies and the series converges. Let s be its sum.
If we approximate s by the partial sum s_{7}, then $\left|s-s_{7}\right|<b_{8}=\frac{1}{8}$
(By methods found near the end of Chapter 11, it tuens out that the exact sum $s=\ln 2$.
So $\quad\left|s-s_{7}\right|=\left|s-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}\right)\right|$

$$
\left.=\left|\ln 2-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}\right)\right| \leq \frac{1}{8} .\right)
$$

Example Does the Alternating Serires Test apply to $\sum_{n=1}^{\infty}(-1)^{2 n} \frac{n}{n+1}$?
No. Since $(-1)^{2 n}=1$ for every $n, \sum_{n=1}^{\infty}(-1)^{2 n} \frac{n}{n+1}=\sum_{n=1}^{\infty} \frac{n}{n+1}$ (which diverges).
$\sum_{n=1}^{\infty}(-1)^{2 n} \frac{n}{n+1}$ is not an alternating series: all terms are positive !

Example Does the Alternating Series Test apply to $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{3 n^{2}+5}$?
No. Here $b_{n}=\frac{n^{2}}{3 n^{2}+5}$ and $\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}+5}=\frac{1}{3}(\neq 0)$.
Note: if we write $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{3 n^{2}+5}=\sum_{n=1}^{\infty} a_{n}$, where $a_{n}=(-1)^{n+1} \frac{n^{2}}{3 n^{2}+5}$, then
$\lim _{n \rightarrow \infty} a_{n} \neq 0$ (this limit doesn't even exist!), so $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{3 n^{2}+5}$ divegres (by the Test for Divergence).

