We reviewed the comparison test and the limit comparison test. Note that these tests, and the earlier integral test, only are valid for series with <u>positive terms</u> a_n

Comparison test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series where all $a_n > 0$ and all $b_n > 0$ Suppose $a_n \le b_n$ for all n. Then

• if
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} b_n$ also diverges

• if
$$\sum_{n=1}^{\infty} b_n$$
 converges, then $\sum_{n=1}^{\infty} a_n$ also converges

The Limit Comparison Test

Suppose a_n and $b_n > 0$ for all n. Consider the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$

If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$
 where $L \neq 0$. $L \neq \infty$

then
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge

- Q1: (Comparison Test): The series $\sum_{n=1}^{\infty} \frac{1}{n!}$
- A) $\sum_{n=1}^{\infty} \frac{1}{n!}$ diverges because $\frac{1}{n!} > \frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ diverges
- B) $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $\frac{1}{n!} > \frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges
- C) $\sum_{n=1}^{\infty} \frac{1}{n!}$ diverges because $\frac{1}{n!} < \frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges
- D) $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $\frac{1}{n!} < \frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges
- E) $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $\frac{1}{n!} < \frac{1}{2^{n-1}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ diverges
- <u>Answer</u> $\frac{1}{n!} = \frac{1}{1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n} = \frac{1 \cdot 1 \cdot 1 \cdot \cdots 1 \cdot 1}{1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n}$ $< \frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2^{n-1}}$ So $\sum_{n=1}^{\infty} \frac{1}{n!} \le \sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$. Since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges (geometric series, $r = \frac{1}{2}$). $\sum_{n=1}^{\infty} \frac{1}{n!}$ must also converge by the Comparison Test.

Q2: You can use the Limit Comparison Test to decide that $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$

A)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$
 diverges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{n}$

- B) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$ converges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{n}$
- C) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$ diverges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$
- D) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$ converges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$
- E) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$ converges by using the Limit Comparison Test with the series $\sum_{n=2}^{\infty} \frac{1}{n^2}$

For very large *n*, the terms $a_n = \frac{1}{n\sqrt{n^2-1}}$ are approximately the same as $\frac{1}{n\sqrt{n^2}} = \frac{1}{n^2}$, so I'm guessing that $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$ behaves like $\sum_{n=2}^{\infty} \frac{1}{n^2}$. To check out this guess, I use the Limit Comparison Test:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{1/(n\sqrt{n^2 - 1})}{1/n^2} = \lim_{n \to \infty} \frac{n^2}{n\sqrt{n^2 - 1}} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 - 1}} = \lim_{n \to \infty} \frac{1}{(\sqrt{n^2 - 1})/n}$$
$$= \lim_{n \to \infty} \frac{1}{\sqrt{1 - 1/n^2}} = 1.$$

By the Limit Comparison Test, $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$ converges because $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges.

Example:
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
$$\frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{n}{n} \quad \text{(for } n \ge 3\text{, each red fraction is } \le 1\text{)}$$
$$\le \frac{1}{n} \cdot \frac{2}{n} \cdot 1 \cdot 1 \dots \quad 1 \cdot 1 = \frac{2}{n^2}$$

Since $\sum_{n=3}^{\infty} \frac{2}{n^2}$ converges, $\sum_{n=3}^{\infty} \frac{n!}{n^n}$ converges by the Comparison Test, so $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ also converges.

Note I could have written

$$\frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{n}{n} \quad \text{(for } n \ge 2\text{, each blue fraction is } \le 1\text{)}$$
$$\le \frac{1}{n} \cdot 1 \cdot 1 \cdot 1 \cdot \dots \quad 1 \cdot 1 = \frac{1}{n}$$

This would then tell me that $\sum_{n=2}^{\infty} \frac{n!}{n^n} \leq \sum_{n=2}^{\infty} \frac{1}{n}$ which is <u>true</u> but not a useful comparison since the larger series $\sum_{n=2}^{\infty} \frac{1}{n}$ <u>diverges.</u>

We now start looking at some tests for series where not all the terms are positive. The simplest kind of series with "mixed signs" is an alternating series:

(or)
$$b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots$$
 (*)
 $(-b_1 + b_2 - b_3 + b_4 - b_5 + b_6 - \cdots$ (**)

Here, we are assuming that the b_n 's themselves are all positive, so that the "+" and " – " signs cause the signs to alternate (For example, if b_2 were itself negative, then $-b_2$ in (*) would positive and there would be no alternation of signs between the first term and the second.)

Alternating Series Test

Supposeall b_n 's > 0 $\lim_{n \to \infty} b_n = 0$ and b_n is a decreasing sequence (each $b_n > b_{n+1}$)

Then the <u>alternating series</u>	$b_1-b_2+b_3-b_4+\cdots$	(*)
or	$-b_1+b_2-b_3+b_4-\cdots$	(**)
converges.		

If an alternating series converges and has sum s, then we can approximate s with a partial sum s_n and the error $s - s_n$ satisfies

 $|s - s_n| < b_{n+1}$ (= the magnitude of the first "ignored" term in the sum)

Example
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

Here, $b_n = \frac{1}{n}$. Since $b_n > 0$, $\lim_{n \to \infty} b_n = 0$ and $b_n > b_{n+1}$

the Altenating Series Test applies and the series converges. Let s be its sum.

If we approximate s by the partial sum s_7 , then $|s - s_7| < b_8 = \frac{1}{8}$

(By methods found near the end of Chapter 11, it tuens out that the exact sum $s = \ln 2$. So $|s - s_7| = |s - (1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7})|$

$$= |ln 2 - (1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7})| \le \frac{1}{8}.)$$

<u>Example</u> Does the Alternating Serires Test apply to $\sum_{n=1}^{\infty} (-1)^{2n} \frac{n}{n+1}$?

No. Since $(-1)^{2n} = 1$ for every n, $\sum_{n=1}^{\infty} (-1)^{2n} \frac{n}{n+1} = \sum_{n=1}^{\infty} \frac{n}{n+1}$ (which diverges). $\sum_{n=1}^{\infty} (-1)^{2n} \frac{n}{n+1}$ is <u>not</u> an alternating series: all terms are positive !

Example Does the Alternating Series Test apply to $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{3n^2+5}$? No. Here $b_n = \frac{n^2}{3n^2+5}$ and $\lim_{n\to\infty} \frac{n^2}{3n^2+5} = \frac{1}{3}$ ($\neq 0$). Note: if we write $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{3n^2+5} = \sum_{n=1}^{\infty} a_n$, where $a_n = (-1)^{n+1} \frac{n^2}{3n^2+5}$, then $\lim_{n\to\infty} a_n \neq 0$ (this limit doesn't even exist!), so $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{3n^2+5}$ divegres (by the Test for Divergence).