We reviewed the comparison test and the limit comparison test. Note that these tests, and
the earlier integral test, only are valid for series with positive terms a,,

Comparison test: Suppose ) a, and ) b, are series where all ., > 0 and all b, > 0
n=1 n=1

Suppose a,, < b, for all n. Then
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e if > a, diverges, then > b, also diverges
n=1 n=1
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e if > b, converges, then > a, also converges

n=1 n=1

The Limit Comparison Test

Suppose a,, and b,, > 0 for all n. Consider the series ) a,, and > b,

n=1 n=1

If lim 3 = L where L # 0. L # oo
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then > a, and )_ b, either both converge or both diverge

n=1 n=1
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Q1: (Comparison Test): The series » %
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A) Y -5 diverges because - > 7 and Y 5t diverges
n=1 n=1
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B) 3 7 converges because —r > 57 and ) 5 converges

n=1 n=1
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C) Y & diverges because - < 77 and ) 5t converges
n=1 n=1
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D) >~ L converges because - < 7 and Y 51 converges
n=1

n!
n=1

S o
1 1 1 1 3
E) > & converges because -~ < 57 and ) 5 diverges
n=1 n—1
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So > L <> 5L . Since Y 5= converges (geometric series, r = 3).
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> % must also converge by the Comparison Test.
n=1



Q2: You can use the Limit Comparison Test to decide that nZQ m

d1verges by using the Limit Comparison Test with the series Z 1
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converges by using the Limit Comparison Test with the series » %
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dlverges by using the Limit Comparison Test with the series Z \/—
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D) HZ::Q o converges by using the Limit Comparison Test with the series ”2232 T
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E) > ﬁ converges by using the Limit Comparison Test with the series
n=2
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For very large n, the terms a,, = T are approximately the same as o/ = SO
[o¢]
I'm guessing that Z * behaves like >° 2. To check out this guess, I use the Limit
n=2" -1 n=2 "
Comparison Test:
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By the Limit Comparison Test, E \/— converges because Z converges.
n= 2



Example: -
n
n=1
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nt—1.2.3 4 .. .n-1.n (forn > 3, eachred fractionis < 1)
n n n n n n
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Since S 2 converges 2 converges by the Comparison Test, so 2 also
n > n ’ n
n=3 n=3 n=1
converges.

Note I could have written
(for n > 2, each blue fractionis < 1)

nl __1, 2 3 4 . . .n=-1_n
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This would then tell me that Z—,! < > % which is true but not a useful comparison

n=2 n=2
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since the larger series > 1 diverges.

n=2



We now start looking at some tests for series where not all the terms are positive. The
simplest kind of series with “mixed signs” is an alternating series:

by —by+bg—by+bs—bg+ --- (*)

(or) —b+by—bg+by—0b5 +bg—--- (**)
Here, we are assuming that the b,,'s themselves are all positive, so that the “+”and “ —”
signs cause the signs to alternate (For example, if by were itself negative, then — b
in (*) would positive and there would be no alternation of signs between the first term
and the second.)

Alternating Series Test

Suppose all b,'s >0
limb, =0
and b, is a decreasing sequence (each b, > b, 1)
Then the alternating series by — by +bg —bg+--- (*)
or —by+by—bs+by—--- (**)
converges.

If an alternating series converges and has sum s, then we can approximate s with a partial
sum s,, and the error s — s,, satisfies

|s — | < bpy1 (= the magnitude of the first “ignored”
term in the sum)
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Here, b, = +. Since b, > 0,
limb, =0 and
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bn > bn-‘,—l

the Altenating Series Test applies and the series converges. Let s be its sum.
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If we approximate s by the partial sum s7, then |s — s7| < bg = 3

(By methods found near the end of Chapter 11, it tuens out that the exact sum s = In 2.
So ls—s7|=s—(1-34+3i—14+1—3+1)]
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Example Does the Alternating Serires Test apply to 2_:1( —1)% i 7

No. Since (—1)?" = 1foreveryn, >.(—1)*" Z o (which diverges).

n=1 n=1

>~ (—1)*—_ is not an alternating series: all terms are positive !

n+1
n=1
. . 0 "2
Example Does the Alternating Series Test apply to Z1< — 1) —5
n=
2

No. Here b, = 3+ and hm 3n2+ = =3 (#0).
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Note: if we write Zl( - )" s = Zlan, where a, = (—1)"" 5.7, then

n= n=
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nll_)rlolo a, # 0 (this limit doesn't even exist!), so nz::1( — 1) W” — divegres (by the Test for

Divergence).



