We reviewed the ratio and root tests.

The Ratio Test For a series $\sum a_{n}$ (where the $a_{n}{ }^{\prime}$ s may/may not have mixed signs):

$$
\text { If } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L, \text { then } \begin{cases}\text { if } L<1 & \text { then } \sum a_{n} \text { converges absolutely } \\
\text { if } L>1 \text { or }=\infty & \text { then } \sum a_{n} \text { diverges } \\
\text { if } L=1 & \begin{array}{l}
\text { ratio test fails: series behavior is undecided } \\
\text { (must try some other test) }
\end{array}\end{cases}
$$

The Root Test For a series $\sum a_{n}$ (where the a_{n} 's may/may not have mixed signs):

If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$, then $\begin{cases}\text { if } L<1 & \text { then } \sum a_{n} \text { converges } \underline{\text { absolutely }} \\ \text { if } L>1 \text { or }=\infty & \text { then } \sum a_{n} \text { diverges } \\ \text { if } L=1 & \text { root test fails: series behavior is undecided } \\ \text { (must try some other test) }\end{cases}$
Note that the conclusions that you draw from L are the same for both the Ratio Test and the Root Test.

Why does the Root Test work? Here's the explanation for the case when $L>1$:
Suppose $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$. Pick a number r, where $1<r<L$.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$, the values of $\sqrt[n]{\left|a_{n}\right|}$ get as closed as desired to L when n is large enough. So we can pick a number N such that, when $n \geq N$, $\sqrt[n]{\left|a_{n}\right|}>r$.

Then, when $n \geq N,\left|a_{n}\right|>r^{n}$. Since $r>1, r^{n} \rightarrow \infty$ as $n \rightarrow \infty$, and so $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$ also. Therefore $\lim _{n \rightarrow \infty} a_{n} \neq 0$ By the Test for Divergence, $\sum a_{n}$ must diverge.

The justification for the Root Test when $L<1$ is similar to the justification we gave in class when $L<1$ for the Ratio Test,

Q1 Apply the root test to the series $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{n}}$. What conclusion do you draw?
A) The series diverges
B) The series converges absolutely
C) The series converges conditionally
D) The Root Test is inconclusive

Answer $a_{n}=\frac{(n!)^{n}}{n^{n}}$, so $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(n!)^{n}}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{n!}{n}=\lim _{n \rightarrow \infty}(n-1)!=\infty$ so, by the Root Test, the series diverges.

Suppose $c_{0}, c_{1}, \ldots, c_{n}, \ldots$ are constants. A series like
(*) $\quad \sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots \quad$ is an example of a power series
Informally, you can imagine it as a "infinitely long polynomial." It will converge when certain x values (for example $x=0$) are substituted in, and may diverge when certain other x values are substituted into (*).

For those x 's that make the series converge, the series has a sum which depends on the x value:

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots=f(x)
$$

For example, $f(0)=c_{0}+c_{1}(0)+c_{2}(0)^{2}+\ldots=c_{0}$. The domain for the function defined by the equation $\left(^{*}\right)$ is the set of x 's that make the series converge.

Example: $\quad 1-x+x^{2}-x^{3}+\ldots=f(x)$
This is a geometric series where the first term $a=1$ and the ratio $r=-x$. Therefore it converges when $|r|=|-x|=|x|=1$, that is, when $-1<x<1$ so
(**) $\quad 1-x+x^{2}-x^{3}+\ldots=\frac{a}{1-r}=\frac{1}{1-(-x)}=\frac{1}{1+x}=f(x), \quad-1<x<1$
Note: The formula $\frac{1}{1+x}$ makes sense for all $x \neq-1$, But only for $-1<x<1$ does the sum of the power series "add up" to $f(x)=\frac{1}{1+x}$. If we think of $f(x)$ as being defined as the sum of the series, then $f(x)$ is only defined where the series "adds up" to something: $-1<x<1$.

We could also think of "reading" equation (${ }^{* *)}$) from right to left: given $\frac{1}{1+x}$ can we think of a series whose sum (at least for certain x^{\prime} s) is $\frac{1}{1+x}$. We can reason that $\frac{1}{1+x}$ looks like $\frac{a}{1-r}=$ the sum of a geometric series with first term z and ratio r if we choose $a=1$ and $r=-x$. Then we could write down the series $1-x+x^{2}-x^{3}+\ldots$ as a power series whose sum is $\frac{1}{1+x}$, provided that $|r|=|-x|=|x|<1$.

Example

We can create new series and functions from equation (**).

- Substitute $x=3 w$ into $\left({ }^{* *}\right)$.

$$
1-3 w+9 w^{2}-27 w^{3}+\ldots=\frac{1}{1+3 w}
$$

But to use $\left({ }^{* *}\right)$, we need $|x|=|3 w|<1$, so the new equation is valid if $|w|<\frac{1}{3}$, that is $-\frac{1}{3}<w<\frac{1}{3}$.

- For $-1<x<1$, multiply (${ }^{* *}$) by $2 x^{2}$ to get

$$
2 x^{2}-2 x^{3}+2 x^{4}-\ldots=\frac{2 x^{2}}{1+x} \quad \text { for }-1<x<1
$$

Again (reading right to left) we could have asked: "find a series that represents the function $f(x)=\frac{2 x^{2}}{1+x}$. This function looks like the sum of a geometric series $\frac{a}{1-r}$ where $a=2 x^{2}$ and $r=-x$. We could then write down the series on the left, with the restriction that $|r|=|-x|=|x|<1$.

- In $\left({ }^{* *}\right)$, substitute $x=\sin \theta$ to get

$$
1-\sin \theta+\sin ^{2} \theta-\sin ^{3} \theta+\ldots=\frac{1}{1+\sin \theta} \text { provided }|x|=|\sin \theta|<1
$$

that is, when $\sin \theta \neq \pm 1$. Of course when $\sin \theta=1, \frac{1}{1+\sin \theta}=\frac{1}{2}$, but the infinite series doesn't converge (so the series doesn't add to $\frac{1}{2}$).
(Notice, though, that $1-\sin \theta+\sin ^{2} \theta-\sin ^{3} \theta+\ldots$ is NOT a power series because the series is not a sum of powers of the variable $\theta: \theta, \theta^{2}, \theta^{3}$, etc.

The series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{3}+\ldots$
is called a power series centered at a.
(The previous series $1-x+x^{2}-x^{3}+\ldots$ is a power series centered at $a=0$)
Notice that when $x=a$, the series must converge:

$$
\sum_{n=0}^{\infty} c_{n}(a-a)^{n}=c_{0}+c_{1}(a-a)+c_{2}(a-a)^{3}+\ldots=c_{0}
$$

The following theorem indicates why we say that $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is $\underline{\text { centered }}$ at a :
Theorem For a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, exactly one of the following must be true:

1) The series converges only for $x=a$
2) The series converges for all x
3) There is a number $R>0$ such that

- series converges when $|x-a|<R \quad(a-R<x<a+R)$
and - series diverges when $|x-a|>R$.

So in case 3) the series converges in a interval centered at a and with radius R. R is called the radius of convergence of the power series. (The same is true in case 2) if we say that $R=\infty$; and also in case 1) if we say $R=0$)

In case 3), the series might either converge or might diverge when $|x-a|=R$, that is, when $x=a-R=$ left endpoint of the interval, or $x=a+R=$ right endpoint of the interval.

The proof that these are always the only possibilities is a bit tricky (see Appendix in textbook if you're interested, or talk with me.) But in most cases, the ratio or root test will work to show that 1), 2) or 3) must be true for a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$

Q2 For what x 's does the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converge?
A) Only for $x=0$
B) For $-1<x<1$
C) For $-1 \leq x \leq 1$ n D) For $-4 \leq x \leq 4$
E) For all $x \backslash \backslash$
 But for any particular value of $x, \lim _{n \rightarrow \infty} \frac{1}{n+1}|x|=0<1$. So, by the Ratio Test, the series converges to some function $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x. (So, Case 2 in the Theorem: $R=$ radius of convergence $=\infty$).

