An infinite number of
 mathematicians walk into
 a bar. The first one
 orders a beer. The second
 orders half a beer. The
 third, a quarter of a
 beer. The bartender says
 "You're all idiots", and pours two beers.

An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third orders a third of a beer. The bartender bellows, "Get the hell out of here, are you trying to ruin me?"

For x in the interval of convergence :

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots \quad=f(x)
$$

we can define a function $f(x)$ (in a "fancy" way) by writing a power series. In calculus, when we have a function, we are interested in whether we can find its derivative or antiderivative. The following theorem tells us that this is easy for a power series.

Theorem Suppose the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots$ has radius of convergence $R>0$. For x in the interval $(a-R, a+r)$ we can define

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots
$$

Then

- $f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}=c_{1}(x-a)+2 c_{2}(x-a)^{2}+3 c_{3}(x-a)^{2}+\ldots$
- $\int f(x) d x=\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}+C=c_{0}(x-a)+\frac{c_{1}}{2}(x-a)^{2}+\frac{c_{2}}{3}(x-a)^{3}+\ldots+C$

That is, inside the interval of convergence, a power series can be integrated or differentiated "term by term" just as if it were a polynomial.

At the endpoints of the interval, where $x=a \pm R$, the formulas \bullet and \bullet may not be true, even if the power series (*) converges at the endpoint.

Q1. Suppose $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n+1}}=\frac{1}{2}+\frac{x}{2^{2}}+\frac{x^{2}}{2^{3}}+\frac{x^{3}}{2^{4}}+\ldots \quad(|x|<2)$
Which of the following is $f^{\prime}(1)$ and what is its value?
A) $f^{\prime}(1)=\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}=\frac{1}{2}$
B) $f^{\prime}(1)=\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}=1$
C) $f^{\prime}(1)=\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}=1$
D) $f^{\prime}(1)=\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}=\frac{1}{3}$
E) $f^{\prime}(1)=\sum_{n=1}^{\infty} \frac{n+1}{2^{n+1}}=\frac{3}{2}$

SUPPOSE I OFFERED YOU A CHOICE OF ONE OF THE FOLLOWING AMOUNTS. YOU MAY CHOOSE ONLY ONE (AND IDEALLY YOL'D LIKE THE LARGEST ONE).

NOTE: BOTH SERIES ARE CONVERGENT (WHY?).

Solution $f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{2^{n+1}}$, so $f^{\prime}(1)=\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$
However $f(x)$ is a geometric series, so we can write $f(x)=\frac{a}{1-r}=\frac{\frac{1}{2}}{1-\frac{x}{2}}=\frac{1}{2-x}$
and therefore $f^{\prime}(x)=\frac{1}{(2-x)^{2}}$, so $f^{\prime}(1)=1$.
Therefore $f^{\prime}(1)=\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}=1$.
(In the cartoon, all three are equal.)

Example $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}$ is the sum of the geometric series

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \quad(\text { for }|x|<1)
$$

Multiplying by $2 x$ gives

$$
\frac{2 x}{1+x^{2}}=2\left(x-x^{3}+x^{5}-x^{7}+x^{9}-\ldots\right) \quad=2 \sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1} \quad(\text { for }|x|<1)
$$

Integrating gives

$$
\begin{array}{ll}
\begin{array}{ll}
\int \frac{2 x}{1+x^{2}} d x=2 \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{2 n+2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n+1}+C_{1} & (\text { for }|x|<1) \\
& =x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}+\ldots+C_{1} \\
& (\text { for }|x|<1) \\
& \\
\ln \left(1+x^{2}\right)=x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}+\ldots+C &
\end{array} & (\text { for }|x|<1)
\end{array}
$$

When $x=0$, this gives $\ln 1=0+C$, so c must be 0 .
so we can write

$$
\ln \left(1+x^{2}\right)=x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n+1} \quad(\text { for }|x|<1)
$$

Note: we can't justify here, but in fact this equation is also true when $x=1$. So

$$
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1} \quad \text { (the alternating harmonic series) }
$$

Q2 Write a power series that represents $f(x)=\frac{1}{1+x^{6}}$ for $|x|<1$
A) $1+x^{6}+x^{12}+x^{18}+x^{14}+\cdots \quad=\sum_{n=0}^{\infty} x^{6 n}$
B) $1-x^{2}+x^{4}-x^{6}+x^{8}+\cdots \quad=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
C) $1+x^{2}+x^{4}+x^{6}+x^{8} \cdots \quad=\sum_{n=0}^{\infty} x^{2 n}$
D) $1-x^{6}+x^{12}-x^{18}+x^{24}-\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n} x^{6 n}$
E) $1-x^{4}+x^{8}-x^{12}+x^{16}-\cdots \quad=\sum_{n=0}^{\infty}(-1)^{n} x^{4 n}$

Solution $f(x)=\frac{1}{1+x^{6}}=\frac{1}{1-\left(-x^{6}\right)}=$ sum of geometric series with $a=1$, and $r=-x^{6}$:

$$
\begin{array}{ll}
\frac{1}{1+x^{6}}=1-x^{6}+x^{12}-x^{18}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{6 n} & \text { where }|r|=\left|x^{6}\right|<1 \\
& \text { that is, where }|x|<1
\end{array}
$$

Example Approximate the value of $\int_{0}^{\frac{1}{4}} \frac{1}{1+x^{6}} d x$. We could use the Midpoint Rule, or Simpson's Rule, or, here's another method involving infinite series (which is very efficient in this example):

$$
\begin{aligned}
\int_{0}^{\frac{1}{4}} \frac{1}{1+x^{6}} d x= & \int_{0}^{1} 1-x^{6}+x^{12}-x^{18}+\ldots d x=\left.\left(x-\frac{x^{7}}{7}+\frac{x^{13}}{13}-\frac{x^{19}}{19}+\ldots\right)\right|_{0} ^{\frac{1}{4}}= \\
& =\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{7}}{7}+\frac{\left(\frac{1}{4}\right)^{13}}{13}-\frac{\left(\frac{1}{4}\right)^{19}}{19}+\ldots
\end{aligned}
$$

This is a convergent alternating series, and if we approximate the sum using just the first three terms we get

$$
\int_{0}^{\frac{1}{4}} \frac{1}{1+x^{6}} d x \quad \approx \frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{7}}{7}+\frac{\left(\frac{1}{4}\right)^{13}}{13} \quad \approx 0.249991281838207
$$

and since this is an alternating series, we know that

$$
\left|\int_{0}^{\frac{1}{4}} \frac{1}{1+x^{6}} d x-\left(\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{7}}{7}+\frac{\left(\frac{1}{4}\right)^{13}}{13}\right)\right|=|\operatorname{error}| \leq \frac{\left(\frac{1}{4}\right)^{19}}{19}
$$

so that $\left(\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{7}}{7}+\frac{\left(\frac{1}{4}\right)^{13}}{13}\right)-\frac{\left(\frac{1}{4}\right)^{19}}{19} \leq \int_{0}^{\frac{1}{4}} \frac{1}{1+x^{6}} d x \leq\left(\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{7}}{7}+\frac{\left(\frac{1}{4}\right)^{13}}{13}\right)+\frac{\left(\frac{1}{4}\right)^{19}}{19}$
Since $\frac{\left(\frac{1}{4}\right)^{19}}{19} \approx 1.914725687943007 \times 10^{-13}$ we get

$$
\mathbf{0 . 2 4 9 9 9 1 2 8 1 8 3 8 0 1 6} \leq \int_{0}^{\frac{1}{4}} \frac{1}{1+x^{6}} d x \leq \mathbf{0 . 2 4 9 9 9 1 2 8 1 8 3 8 3 9 9}
$$

This is very good accuracy for very little numerical computation - because the terms in this particular alternating series approach 0 so quickly!

