
We have seen that we can sometimes write a function as a power series centered at some
point .  So far, our ability to do this has been limited to cases where we could recognize
the function as the sum of a geometric series.  For example

   
     




                  

In general, we can try to find a power series representation for a function  centered as
   whenever it's possible to compute infinitely many derivatives for  at the point :
                When we try, though, we need to be careful about
the conclusions to draw.
To begin with, let's suppose that it  to find a power series centered at  thatis possible 
represents  in some interval centered at   '  If it s possible what would that power
series have to look like?



IF IT's POSSIBLE TO WRITE
                                        ...
THEN inside the interval of convergence :  
                                     

                          
                   
               

When , all the terms containing an  factor become , so      
            
                  




 ''         so       



 '''                    



 ''''                       




       
              




      for neatness, we can also write    




      if we agree to use “the  
      derivative” for  and agree to the 
      convention that   
So we get that IF IT's POSSIBLE TO WRITE
                                        ...
then it  that the series has each must be    


  , so the series must be

                      
 
  ...

   this is called the     


  
  Taylor series for centered at . 

 It is the  for a power series, centered at , that represents .only candidate  
 Whether it “works” and for what 's needs to be determined.



 
Q1:  For what is the value of the tenth derivative evaluated at     


  

A)    B)    D)   E)   
 C) 10   

Solution is  we already know (from what we know about geometric series) that there  a
power series centered at , that represents  for        

   
       




                      

Since the Taylor series for with      is the  for a power series,only candidate
centered at , that represents ,     this series must actually be the Taylor series !!.
So the coefficients in this series must be the Taylor series coefficients     




If you check you'll find, just for example, that , which is why there is no        



term in the series:  has coefficient    

The coefficient of the  term in the series is so               
 0 

________________________________________________________________________
Some examples of Taylor series (all of these with  and some things that can  
happen:

1) For   


    Taylor series at                                 



    Because this is a geometric series, we already know that it converges when

 that is, when And, from what we already know about          
    geometric series, that

                       
       




 

   In this example some , the Taylor series for the function  converges for  (not all!) 
and, where the series converges, its sum is the function   





2) Very simple example: .  What is the Taylor series centered at ?     

     and 0 when                      
so   and, for                         

     
   

 c That is, all  except for    
 

         

   The Taylor series is 



                    

Since there's only one nonzero term in the series, it obviously converges for all .
  This example illustrates the “happiest case possible”:  the Taylor series for 
  converges for   and, where the series converges, its sum is the original functionall 
 

3) A oddball function.  Let when 1
when        

    

    
Calculating derivatives at  depends only on the values of  near so the     
derivatives evaluated at  are exactly the same as for the function   Therefore the  
coefficients in the Taylor series at are exactly the same as for the function The    
Taylor series at  for this function is the same as for      

 The Taylor series is 



                    

In this example, The Taylor series for converges for  but its sum      all 
equals the function  for       only



The preceding examples illustrate that when we write the Taylor series for a function it
might converge for some 's or all 's; and even where it does converge, its sum might 
not be the function that you used to generate the Taylor series !   We need to discuss (next
lecture) this further.
For now, here are a couple more examples of Taylor series (at ,  comment   without
about whether the function sums up to the original function 
Example  What is the Taylor series at  for the function ?     

Q2:  In the Taylor series for  centered at      

                 
 
What is the coefficient ?
A)  B)   C)   D)      

   E) 


Since  we get that              
   

   

In general,  for every  we get a formula for all the 's very easily:       

       
  

  

The full Taylor series at  is  
                                    

     

                   
   

   
Notice that by the Ratio Test,  for lim lim lim  


   

          



 every

 .   The Taylor series converges for  (but whether its sum is is still uncertain).all 

Example  What is the Taylor series at  for the function sin ?      
Here, the derivatives repeat in “blocks” of size 4:
 sin    sin   sin           
 cos    sin   sin etc.             
 sin   sin   sin              
 cos   sin   sin              



So the derivatives evaluated at  also repeat in blocks:
                  
       etc.             
                    
                      

so the for the 's repeat in blocks, givingnumerators 
                

           etc.         
  5 9                 
  10            3 3 1  
   

Therefore all the  powers ,   have coefficient  and these terms “dropeven            
out” of the Taylor series.  The Taylor series for sin at  is   

 c          
   

                        

The Ratio Test: |  for anylim lim lim  

   

           





value of 
The Taylor series converges for  (but whether its sum is is still uncertain.all  


