We have seen that we can sometimes write a function as a power series centered at some
point a. So far, our ability to do this has been limited to cases where we could recognize
the function as the sum of a geometric series. For example

o
ﬁ =1-2? 4+t —a2b 4 .. :Z—:o( — 1) x| <1

In general, we can try to find a power series representation for a function f(x) centered as
a whenever it's possible to compute infinitely many derivatives for f at the point a:

f'(a), f'(a), f"(a), ..., f™(a), ... When we try, though, we need to be careful about
the conclusions to draw.

To begin with, let's suppose that it is possible to find a power series centered at a that
represents f(z) in some interval centered at a. If it's possible, what would that power
series have to look like?




IF IT's POSSIBLE TO WRITE
flx)=co+c(r—a)+c(r—a)?+cs(z—a)+ci(r—a) + cs(xz —a)’ + ...

THEN (inside the interval of convergence):

f'(z) = c1+ 20¢(z — a) + 3es(z — a)? + des(z — a)® + Bes(z — a)* + ..
f"(x) = 2¢, + 3(2)cs(z — a) + (4)(3)ea(x — a)? + (5)(4)es(z — a) + ...
" (x) =3(2)cs + (4)(3)(2)ca(x — a) + (5)(4)(3)es(z — a)® + ...

" (@) = @)B3)2)ca+ (5)(A)B)(2)es(z —a) + ...

When z = a, all the terms containing an (x — a) factor become 0, so

fla) =c c = f(a) ,
fla) = e1 = f'(a) = £
@) =20 o 6= flo)/2= L
f"(a) =3-2c3 cs = f"(a)/(3-2) = L5
f""(a) =4-.-3-2¢ C4:f////(a)/(4_3.2): f4$a)
f™(a) =n(n—1)...2)c, Cn = f(TZ!(a)
(for neatness, we can also write ¢y = i (0(;!((1)

if we agree to use f)(z) = “the
0" derivative” for f(z) and agree to the
convention that 0! = 1)

So we get that IF IT's POSSIBLE TO WRITE
fx)=c+al@—a)+c(z—a)+ce(z—a)+c(r—a) +cs(z—a)® + ..

£ (a)

—— , so the series must be

then it must be that the series has each ¢,, =

fla)+ fla)(@—a)+ Lz —a)? + .. + L9 (p gy 4

n!

=y ! W@ (r —a)™: this is called the Taylor series for fcentered at a.

It is the only candidate for a power series, centered at a, that represents f.

Whether it “works” and for what x's needs to be determined.



Q1: For f(x) = 7572, What is the value of the tenth derivative evaluated at 0 :

£19(0) =

A0 B) — 4y C) — 10! D) E) 1

Solution we already know (from what we know about geometric series) that there is a
power series centered at a = 0, that represents f(z) for |z] < 1 :

ﬁzl—x2+x4—x6+x8—xm+...:zjo(—l)”xz” lz| <1
n=

Since the Taylor series for f(x), with a = 0, is the only candidate for a power series,
centered at ¢ = 0, that represents f, this series must actually be the Taylor series !!.

. o . : . 0]
So the coefficients in this series must be the Taylor series coefficients ¢, = ! TL!(O)
If you check you'll find, just for example, that ¢; = @ = 0, which is why there is no c;z
term in the series: x has coefficient ¢; = 0.
. : . (10)
The coefficient of the 2'° term in the series is ¢jp = — 1 = £ 1&0)7 so f19(0) = — 10!

Some examples of Taylor series (all of these with a = 0) and some things that can
happen:

1) For f(z) = 2

1+ 22
oo
Taylorseriesata =0: 1+ 221 — 2?2 + a2t — 20 + 28 — 20+ . =3 (- 1)
n=0
Because this is a geometric series, we already know that it converges when
|r| = | — 2% < 1, that is, when |z| < 1. And, from what we already know about
geometric series, that

o0

F@) = o —1— 2ot gt ab gl L =35 (— 1
n=0

In this example, the Taylor series for the function f(z) converges for some z (not all!)

and, where the series converges, its sum is the function f(x) = ﬁ




2) Very simple example: f(z) = 2. What is the Taylor series centered at a = 0 ?

f(z) =22, f'(x) =2z, f'(x) =2, and f)(2) = Owhenn > 2.

SO co:f(()?) =2=0, 01:@:%20, 02:@:%:1, and, forn > 2,
Cph = f<2!(0) = % = 0. Thatis, all ¢,, = 0 except for c; = 1
The Taylor series is Y c,z" = 0+ 0x + 12? + 02° + 02* +.... =22

n=0
Since there's only one nonzero term in the series, it obviously converges for all z.

This example illustrates the “happiest case possible”: the Taylor series for f(x)
converges for all = and, where the series converges, its sum is the original function

f(@).

: 2 —1<z<
3) A oddball function. Let g(x) = { :f XEZE 2| 1>_1x <1

o | 1

Calculating derivatives at a = 0 depends only on the values of f(x) near 0 — so the
derivatives evaluated at 0 are exactly the same as for the function z2. Therefore the
coefficients in the Taylor series at a = 0 are exactly the same as for the function 22. The
Taylor series at 0 for this function f () is the same as for f(z) = z? :

The Taylor series is Y c,z" = 0+ 0x + 122 + 02 + 02t + ... = 2?

n=0
In this example, The Taylor series for g(z) converges for all z, but its sum ( = 2?)
equals the function g(x) only for — 1 <z < 1.



The preceding examples illustrate that when we write the Taylor series for a function it
might converge for some z's or all z's; and even where it does converge, its sum might
not be the function that you used to generate the Taylor series! We need to discuss (next
lecture) this further.

For now, here are a couple more examples of Taylor series (at a = 0), without comment
about whether the function sums up to the original function f(x).

Example What is the Taylor series at a = 0 for the function f(z) = e”?
Q2: In the Taylor series for f(x) = e” centered at a = 0

co+ 1 + cox? + e384 ..
What is the coefficient c3?
Al B) -1 C) 5 D)1l E)l

. N o)
Since f®)(z) = e®, we get that c3 = 20 FO) =2 = =%

In general, f(") (z) = e” for every n, we get a formula for all the ¢,'s very easily:

) W
e =1

Q

2
|-

The full Taylor series at a = 0 is
ot arter?tar+ =g+ g+ g+ gt 4+ a4

Notice that by the Ratio Test, lim [ | = 11 | @ f:i) . ;‘H = hm n ——|z] =0 for very

n—oo

z. The Taylor series converges for all (but whether its sum is e” is still uncertain).

Example What is the Taylor series at a = 0 for the function f(z) =sinxz ?

Here, the derivatives repeat in “blocks” of size 4:

f(z) =sinx f@(z) =sinz f®(z) =sinz
f'(x) = cosx fO)(z) =sinz fO)z) =sinz etc
f"(z) = —sinz fO(z) =sinz f19(z) = sinx
f"(z) = —cosx fD(z) =sinz fU(z) = sinx



So the derivatives evaluated at 0 also repeat in blocks:

f(0)=0 fW0) =0 f®0)=0
f1(0) =1 fO0)=1 fO0) =1 etc.
f'(0)=0 FO®0) =0 FU9(0) =0
7(0) = — 1 o0 = —1 )= —1
so the numerators for the ¢,'s repeat in blocks, giving
Co = % Cqy = % Cg = %
01:% C5:% CgZ% etc.
=4 6= 3 o = 15
=3 = ¢ = T
Therefore all the even powers ¥, 22, 2*, 2°, ... have coefficient 0 and these terms “drop
out” of the Taylor series. The Taylor series for sinxzat a = 0 is
qz+erdter’+. = gad4 Gt - LaT+ L =3 (- 1)”%
n=0
The Ratio Test: lim “a—zl| zylim|(2ff7:;)! . (2;2,2}” = lim mm% = 0 for any

value of z.

The Taylor series converges for all x (but whether its sum is e” is still uncertain.



