We have seen that we can sometimes write a function as a power series centered at some point a. So far, our ability to do this has been limited to cases where we could recognize the function as the sum of a geometric series. For example

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \quad|x|<1
$$

In general, we can try to find a power series representation for a function $f(x)$ centered as a whenever it's possible to compute infinitely many derivatives for f at the point a : $f^{\prime}(a), f^{\prime \prime}(a), f^{\prime \prime \prime}(a), \ldots, f^{(n)}(a), \ldots$ When we try, though, we need to be careful about the conclusions to draw.

To begin with, let's suppose that it is possible to find a power series centered at a that represents $f(x)$ in some interval centered at a. If it's possible, what would that power series have to look like?

IF IT's POSSIBLE TO WRITE

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+\ldots
$$

THEN (inside the interval of convergence):

$$
\begin{aligned}
f^{\prime}(x) & =c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+5 c_{5}(x-a)^{4}+\ldots \\
f^{\prime \prime}(x) & =2 c_{2}+3(2) c_{3}(x-a)+(4)(3) c_{4}(x-a)^{2}+(5)(4) c_{5}(x-a)^{3}+\ldots \\
f^{\prime \prime \prime}(x) & =3(2) c_{3}+(4)(3)(2) c_{4}(x-a)+(5)(4)(3) c_{5}(x-a)^{2}+\ldots \\
f^{\prime \prime \prime \prime}(x) & =(4)(3)(2) c_{4}+(5)(4)(3)(2) c_{5}(x-a)+\ldots
\end{aligned}
$$

When $x=a$, all the terms containing an $(x-a)$ factor become 0 , so

$$
\begin{array}{rlrl}
f(a) & =c_{0} & & c_{0}=f(a) \\
f^{\prime}(a) & =c_{1} & & c_{1}=f^{\prime}(a)=\frac{f^{\prime}(a)}{1!} \\
f^{\prime \prime}(a) & =2 c_{2} & \underline{\text { so }} & \\
c_{2} & =f^{\prime \prime}(a) / 2=\frac{f^{\prime \prime}(a)}{2!} \\
f^{\prime \prime \prime}(a) & =3 \cdot 2 c_{3} & & c_{3}=f^{\prime \prime \prime}(a) /(3 \cdot 2)=\frac{f^{\prime \prime \prime}(a)}{3!} \\
f^{\prime \prime \prime \prime}(a) & =4 \cdot 3 \cdot 2 c & & c_{4}=f^{\prime \prime \prime \prime}(a) /(4 \cdot 3 \cdot 2)=\frac{f^{\prime \prime \prime \prime}(a)}{4!} \\
& \vdots & & \vdots \\
f^{(n)}(a) & =n(n-1) \ldots(2) c_{n} & & c_{n}=\frac{f^{(n)}(a)}{n!}
\end{array}
$$

(for neatness, we can also write $c_{0}=\frac{f^{(0)}(a)}{0!}$ if we agree to use $f^{(0)}(x)=$ "the $0^{\text {th }}$ derivative" for $f(x)$ and agree to the convention that $0!=1$)

So we get that IF IT's POSSIBLE TO WRITE

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+\ldots
$$

then it $\underline{\text { must be }}$ that the series has each $c_{n}=\frac{f^{(n)}(a)}{n!}$, so the series must be

$$
\begin{aligned}
& f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\ldots \\
& =\sum_{n=-}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}: \text { this is called the Taylor series for } f \text { centered at } a .
\end{aligned}
$$

It is the only candidate for a power series, centered at a, that represents f.
Whether it "works" and for what x 's needs to be determined.

Q1: For $f(x)=\frac{1}{1+x^{2}}$, what is the value of the tenth derivative evaluated at 0 : $f^{(10)}(0)=$
A) 0
B) $-\frac{1}{10!}$
C) -10 !
D) $\frac{1}{10!}$
E) 1

Solution we already know (from what we know about geometric series) that there is a power series centered at $a=0$, that represents $f(x)$ for $|x|<1$:

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-x^{10}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \quad|x|<1
$$

Since the Taylor series for $f(x)$, with $a=0$, is the only candidate for a power series, centered at $a=0$, that represents f, this series must actually be the Taylor series !!.

So the coefficients in this series must be the Taylor series coefficients $c_{n}=\frac{f^{(n)}(0)}{n!}$.
If you check you'll find, just for example, that $c_{1}=\frac{f^{\prime}(0)}{1!}=0$, which is why there is no $c_{1} x$ term in the series: x has coefficient $c_{1}=0$.

The coefficient of the x^{10} term in the series is $c_{10}=-1=\frac{f^{(10)}(0)}{10!}$, so $f^{(10)}(0)=-10$!

Some examples of Taylor series (all of these with $a=0$) and some things that can happen:

1) For $f(x)=\frac{1}{1+x^{2}}$

Taylor series at $a=0: 1+x^{2} 1-x^{2}+x^{4}-x^{6}+x^{8}-x^{10}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
Because this is a geometric series, we already know that it converges when $|r|=\left|-x^{2}\right|<1$, that is, when $|x|<1$. And, from what we already know about geometric series, that

$$
f(x)=\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-x^{10}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

In this example, the Taylor series for the function $f(x)$ converges for some x (not all!) and, where the series converges, its sum is the function $f(x)=\frac{1}{1+x^{2}}$
2) Very simple example: $f(x)=x^{2}$. What is the Taylor series centered at $a=0$?

$$
f(x)=x^{2}, f^{\prime}(x)=2 x, f^{\prime \prime}(x)=2, \text { and } f^{(n)}(x)=0 \text { when } n>2 .
$$

so $\quad c_{0}=\frac{f(0)}{0!}=\frac{0}{1}=0, c_{1}=\frac{f^{\prime}(0)}{1!}=\frac{0}{1!}=0, c_{2}=\frac{f^{\prime \prime}(0)}{2!}=\frac{2}{2!}=1$, and, for $n>2$, $\mathrm{c}_{n}=\frac{f^{(n)}(0)}{n!}=\frac{0}{n!}=0$. That is, all $c_{n}=0$ except for $c_{2}=1$

The Taylor series is $\sum_{n=0}^{\infty} c_{n} x^{n}=0+0 x+1 x^{2}+0 x^{3}+0 x^{4}+\ldots=x^{2}$
Since there's only one nonzero term in the series, it obviously converges for all x.
This example illustrates the "happiest case possible": the Taylor series for $f(x)$ converges for all x and, where the series converges, its sum is the original function $f(x)$.
3) A oddball function. Let $g(x)= \begin{cases}x^{2} & \text { when }-1 \leq x \leq 1 \\ 1 & \text { when }|x| \geq 1\end{cases}$

Calculating derivatives at $a=0$ depends only on the values of $f(x)$ near 0 - so the derivatives evaluated at 0 are exactly the same as for the function x^{2}. Therefore the coefficients in the Taylor series at $a=0$ are exactly the same as for the function x^{2}. The Taylor series at 0 for this function $f(x)$ is the same as for $f(x)=x^{2}$:

The Taylor series is $\sum_{n=0}^{\infty} c_{n} x^{n}=0+0 x+1 x^{2}+0 x^{3}+0 x^{4}+\ldots .=x^{2}$
In this example, The Taylor series for $g(x)$ converges for all x, but its sum $\left(=x^{2}\right)$ equals the function $g(x)$ only for $-1 \leq x \leq 1$.

The preceding examples illustrate that when we write the Taylor series for a function it might converge for some x 's or all x 's; and even where it does converge, its sum might not be the function that you used to generate the Taylor series! We need to discuss (next lecture) this further.

For now, here are a couple more examples of Taylor series (at $a=0$), without comment about whether the function sums up to the original function $f(x)$.

Example What is the Taylor series at $a=0$ for the function $f(x)=e^{x}$?
Q2: In the Taylor series for $f(x)=e^{x}$ centered at $a=0$

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots .
$$

What is the coefficient c_{3} ?
A) 1
B) -1
C) $\frac{1}{3}$
D) $\frac{1}{4}$
E) $\frac{1}{6}$

Since $f^{(3)}(x)=e^{x}$, we get that $c_{3}=\frac{f^{(3)}(0)}{3!}=\frac{e^{0}}{3!}=\frac{1}{3!}=\frac{1}{6}$

In general, $f^{(n)}(x)=e^{x}$ for every n, we get a formula for all the c_{n} 's very easily:

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{e^{0}}{n!}=\frac{1}{n!}
$$

The full Taylor series at $a=0$ is

$$
\begin{aligned}
c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots= & \frac{1}{01}+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots+\frac{1}{n!} x^{n}+\ldots \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}-\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\end{aligned}
$$

Notice that by the Ratio Test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{n+1}|x|=0$ for every
\underline{x}. The Taylor series converges for all x (but whether its sum is e^{x} is still uncertain).

Example What is the Taylor series at $a=0$ for the function $f(x)=\sin x$?
Here, the derivatives repeat in "blocks" of size 4:

$$
\begin{array}{lll}
f(x)=\sin x & f^{(4)}(x)=\sin x & f^{(8)}(x)=\sin x \\
f^{\prime}(x)=\cos x & f^{(5)}(x)=\sin x & f^{(9)}(x)=\sin x \\
f^{\prime \prime}(x)=-\sin x & f^{(6)}(x)=\sin x & f^{(10)}(x)=\sin x \\
f^{\prime \prime \prime}(x)=-\cos x & f^{(7)}(x)=\sin x & f^{(11)}(x)=\sin x
\end{array}
$$

So the derivatives evaluated at 0 also repeat in blocks:

$$
\begin{array}{lll}
f(0)=0 & f^{(4)}(0)=0 & f^{(8)}(0)=0 \\
f^{\prime}(0)=1 & f^{(5)}(0)=1 & f^{(9)}(0)=1 \text { etc. } \\
f^{\prime \prime}(0)=0 & f^{(6)}(0)=0 & f^{(10)}(0)=0 \\
f^{\prime \prime \prime}(0)=-1 & f^{(7)}(0)=-1 & f^{(11)}(0)=-1
\end{array}
$$

so the numerators for the c_{n} 's repeat in blocks, giving

$$
\begin{array}{lll}
c_{0}=\frac{0}{0!} & c_{4}=\frac{0}{4!} & c_{8}=\frac{0}{8!} \\
c_{1}=\frac{1}{1!!} & c_{5}=\frac{1}{5!} & c_{9}=\frac{1}{9!} \quad \text { etc. } \\
c_{2}=\frac{0}{2!} & c_{6}=\frac{0}{6!} & c_{10}=\frac{0}{10!} \\
c_{3}=\frac{-1}{3!} & c_{7}=\frac{-1}{7!} &
\end{array} \quad c_{11}=\frac{-1}{11!}
$$

Therefore all the even powers $x^{0}, x^{2}, x^{4}, x^{6}, \ldots$ have coefficient 0 and these terms "drop out" of the Taylor series. The Taylor series for $\sin x$ at $a=0$ is

$$
\mathbf{c}_{1} x+c_{3} x^{3}+c_{5} x^{5}+\ldots=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} .
$$

The Ratio Test: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+3}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{x^{2 n+1}}\right|=\lim _{n \rightarrow \infty} \frac{1}{(2 n+2)(2 n+3)}\left|x^{2}\right|=0$ for any value of x.

The Taylor series converges for all x (but whether its sum is e^{x} is still uncertain.

