Q1: For what x^{\prime} s does $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converge?
A) $-1<x<1$
B) $-1 \leq x \leq 1$
C) $-e<x<e$
D) $-e \leq e \leq e$
E) all x

Solution Use the ratio test
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{n+1}|x|=0 \underline{\text { for any value of } x}$.
Since the limit is <1 for every x, the ratio test says that the series converges (absolutely) for all x

Note: for the last lecture, this is the Taylor series, centered at $a=0$ for the function $f(x)=e^{x}$. But even though the series converges for all x, it might not be true that the sum of the series is e^{x}. (See last lecture where for a very simple example of where the Taylor series (centered at 0) for a function converges for all x, but not to the original function.)

Q2: What is $\lim _{n \rightarrow \infty} \frac{1000^{n}}{n!}$?
A) 0
B) 1
C) 1000
D) ∞

What do you conclude about $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}$?

Solution You can reason this out directly, but the simplest solution is to note that $\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} \frac{1000^{n}}{n!}$ converges (see Q1), and therefore $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1000^{n}}{n!}=0$. (Recall the Test for Divergencel: if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series would have to diverge!)

The same argument for any value for x, works because $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all x. The "moral" to take away for use late in the lecture is that the limit is 0 because "factorial goes to ∞ faster than the powers of x (for any x)"

Assuming that its possible to find the $n^{\text {th }}$ derivative $f^{(n)}(a)$ for every $n=0,1,2, \ldots$
then it makes sense to write down a power series called the Taylor series of f centered at \underline{a} :
$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=$
$f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\frac{f^{(n+1)}(a)}{(n+1)^{1}}(x-a)^{n+1}+\cdots$

Usually applying the Ratio Test will tell you the radius of convergence of the series. But, whatever that turns out to be, the question is still open: inside the interval of convergence, is the sum of the Taylor series $=f(x)$ or not?

To answer this, we break the series into "two parts"

$$
\begin{array}{ccc}
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} & +\frac{f^{(n+1)}(a)}{(n+1)^{1}}(x-a)^{n+1}+\cdots \\
\text { partial sum of terms up to the }(x-a)^{n} \text { term } & + & \text { remainder } \\
=T_{n}(x) & + & =R_{n}(x)
\end{array}
$$

Just as for any infinite series,

$$
\begin{array}{ll}
\text { sum of the Taylor series }=f(x) & \text { is equivalent to } \\
\lim _{n \rightarrow \infty}(\text { partial sums })=\lim _{n \rightarrow \infty} T_{n}(x)=f(x) & \text { which is equivalent to } \\
\lim _{n \rightarrow 4} f(x)-T_{n}(x)=0 & \text { which is equivalent to } \\
\lim _{n \rightarrow \infty} R_{n}(x)=0 &
\end{array}
$$

So to decide whether $f(x)=$ sum of its Taylor series for any particular x, we need to check whether

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

To do that, we need something that tells us the "size" of $R_{n}(x)$. This information comes form the following "Taylor's Inequality."

Taylor's Inequality If $\quad\left|f^{(n+1)}(x)\right| \leq M \quad$ for all x in $[a-d, a+d \mid$, that is, whenever $|x-a| \leq d$,
then $\quad\left|R_{n}(x)\right| \leq \frac{M|x-a|^{n+1}}{(n+1)!}$
Example Let's consider $f(x)=e^{x}$ and its Taylor series at $a=0$:

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

The first few Taylor polynomials (partial sums) are

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=1+x \\
& T_{2}(x)=1+x+\frac{x_{2}}{2!} \\
& T_{3}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
\end{aligned}
$$

etc.
$\downarrow \quad($ as $n \rightarrow \infty)$

$$
\text { ??? (} e^{x} \text { ???) }
$$

Consider the graphs just on the interval $[-2,2]$ (centered at 0):

$$
\begin{aligned}
& \text { Graph of } e^{\mathrm{x}} \text { and Taylor } \\
& \text { polynomials } \mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2} \mathrm{~T}_{3} \\
& \text { at } \mathrm{a}=0
\end{aligned}
$$

Pick any x in $[-2,2 \mid$: for that x it appears that

$$
T_{0}(x), T_{1}(x), T_{2}(x), T_{3}(x) \rightarrow e^{x}
$$

Notice also that when x close to $a=0$, then even $T_{1}(x)$ is very close to e^{x}; when x is farther from 0 (say, $x=1.9$), we need a bigger n for $T_{n}(x)$ to be very close to e^{x}. It looks like the Taylor polynomials at x are better approximations to e^{x} when x is near the center of the Taylor series, that is, near $a=0$. In fact, every Taylor polynomial is $\underline{\text { exactly }}=e^{x} \underline{\text { at } 0}: 1=e^{0}=T_{0}(0)=T_{1}(0)=\ldots=T_{n}(0)$.

Now we'll settle matters using Taylor's Inequality: pick any $d>0$ and consider the interval $[-d, d]$ (centered at 0).
Since, for every $n, f^{(n+1)}(x)=e^{x}$, and e^{x} is an increasing function, the largest value of $f^{(n+1)}(x)$ in the interval $[-d, d]$ occurs when $x=d$, that is, $\left|f^{(n+1)}(x)\right| \leq e^{d}$ for every x in $[-d, d]$.

So, by Taylor's Inequality,

$$
0 \leq\left|R_{n}(x)\right| \leq \frac{e^{d}|x-0|^{n=1}}{(n+1)!}=e^{d} \frac{\mid x x^{n+1}}{(n+1)!} \text { for any } x \text { in }[-d, d]
$$

e^{d} is just a constant, so as $n \rightarrow \infty, \quad e^{d} \frac{|x|^{n+1}}{(n+1)!} \rightarrow \mathrm{e}^{d}(0)=0$
By the Squeeze theorem, $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0$, so $\lim _{n \rightarrow \infty} R_{n}(x)=0$.
Therefore, as remarked above,

$$
\begin{equation*}
e^{x}=\text { the sum of its Taylor series for any } x \text { in }[-d, d] \tag{*}
\end{equation*}
$$

But d was any positive number we chose at the beginning : d is arbitrary.
So $(*)$ is true for any $x \mathrm{i}[-1,1]$, but also for any x in $[-1000,1000]$ or ...
This shows that

$$
\begin{aligned}
e^{x} & =\text { the sum of its Taylor series } \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text { for any } x
\end{aligned}
$$

Q3: The Taylor series for $\cos x$ at $a=0$ is $c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots$ What is c_{4} ?
A) $\frac{1}{2} / 4$!
В) $1 / 4$!
C) 0
D) $-1 / 4$!
E) $-\frac{1}{2} / 4$!

Solution $c_{n}=\frac{f^{(n)}(0)}{n!}$, so:
$f(x)=\cos x \quad f(0)=\cos 0 \quad=1 \quad c_{0}=1 / 0!=1$
$f^{\prime}(x)=-\sin x \quad f^{\prime}(0)=-\sin 0 \quad=0 \quad c_{1}=0 / 1!=0$
$f^{\prime \prime}(x)=-\cos x \quad f^{\prime \prime}(0)=-\cos 0 \quad=-1 \quad c_{2}=-1 / 2!$
$f^{\prime \prime \prime}(x)=\sin x \quad f^{\prime \prime \prime}(0)=\sin 0 \quad=0 \quad c_{3}=0 / 3$!
$f^{(4)}(x)=\cos x \quad f^{(4)}(0)=\cos 0 \quad=1 \quad c_{4}=1 / 4!$
(repeating in
groups of 4)
In general, the numerators of the coefficients repeated in groups of 4:

$$
1,0,-1,0,1,0,-1,0,1,
$$

so the Taylor series, centered at $a=0$ for $\cos x$ is

$$
\begin{aligned}
& =c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+\cdots \\
& =1+0 x-\frac{x^{2}}{2!}+0 x^{3}+\frac{x^{4}}{4!}+0 x^{5}-\frac{x^{6}}{6!}+\cdots= \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

In any interval $[-d, d],\left|f^{n+1)}(x)\right| \leq 1 \quad$ (because $f^{(n+1)}(x)$ is one of $\pm \sin x$ or $\pm \cos x$)and therefore, using Taylor's Inequality, we get

$$
0 \leq\left|R_{n}(x)\right| \leq\left|\frac{1 \cdot|x-0|^{n+1}}{(n+1)!}\right|=\left|\frac{x^{n+1}}{n+1}\right|
$$

Since $\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{n+1}\right|=0$ (see comment after iClicker Q2), the Squeeze Theorem shows that $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0$, so $\lim _{n \rightarrow \infty} R_{n}(x)=0$. Therefore $\cos x=$ sum of its Taylor series at 0 for any x in $[-d . d]$. Since d is an arbitrary positive number, this shows that $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ for all x. (A similar argument shows that $\sin x$ is the sum of its Taylor series at 0 for all x.)

Three Very Important Taylor Series (at $a=0$)

$$
\begin{aligned}
& f(x)=e^{x} \\
& \qquad \begin{array}{cc}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!} & +\frac{x^{n+1}}{(n+1)!}+\frac{x^{n+2}}{(n+2)!}+\cdots \\
T_{n}(x) & +\quad R_{n}(x)
\end{array}
\end{aligned}
$$

Ratio Test shows that this series converges for all x, but is the sum e^{x} ?
We used Taylor's Inequality to show that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots \quad \underline{\text { for all } x}
$$

$$
\begin{aligned}
& f(x)=\cos x \\
& \sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+(-1)^{n+1} \frac{x^{2 n+2}}{(2 n+2)!}+\cdots \\
& T_{2 n}(x)
\end{aligned}+\quad+\quad R_{2 n}(x) .
$$

Ratio Test shows that this series converges for all x, but is the sum $\cos x$? We used Taylor's Inequality to show that

$$
\cos x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots \quad \underline{\text { for all } x}
$$

$$
f(x)=\sin x
$$

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+(-1)^{n+1} \frac{x^{2 n+3}}{(2 n+3)!}+\cdots
$$

$$
T_{2 n+1}(x) \quad+\quad R_{2 n+1}(x)
$$

Ratio Test shows that this series converges for all x, but is the sum $\sin x$?
We could use Taylor's Inequality (just as we did for $\cos x$) to show that
$\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots \quad \underline{\text { for all } x}$

Example

$$
\sin x \quad=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots
$$

Since this is true for all x we can substitute x^{2} for x in the series to get

$$
\begin{aligned}
\sin \left(x^{2}\right) & =x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\frac{x^{18}}{9!}-\cdots \\
\int_{0}^{1} \sin \left(x^{2}\right) d x & =\int_{0}^{1}\left(x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\frac{x^{18}}{9!}-\cdots\right) d x \\
& =\left.\left(\frac{x^{3}}{3}-\frac{x^{7}}{7 \cdot 3!}+\frac{x^{11}}{11 \cdot 5!}-\frac{x^{15}}{15 \cdot 7!}+\frac{x^{19}}{19 \cdot 9!}-\cdots\right)\right|_{0} ^{1} \\
& =\frac{1}{3}-\frac{1}{7 \cdot 3!}+\frac{1}{11 \cdot 5!}-\frac{1}{15 \cdot 7!}+\frac{1}{19 \cdot 9!}-\cdots \quad\left(\begin{array}{c}
\text { exact } \text { sum of series } \\
\quad \\
\text { exact value of } \\
\quad \text { integral })
\end{array}\right.
\end{aligned}
$$

so

This is an alternating series, so we can approximate the integral

$$
\begin{aligned}
& \int_{0}^{1} \sin \left(x^{2}\right) d x \approx \frac{1}{3}-\frac{1}{7 \cdot 3!}+\frac{1}{11 \cdot 5!}-\frac{1}{15 \cdot 7!} \text { and we can say about the error that } \\
& \left|\int_{0}^{1} \sin \left(x^{2}\right) d x-\left(\frac{1}{3}-\frac{1}{7 \cdot 3!}+\frac{1}{11 \cdot 5!}-\frac{1}{15 \cdot 7!}\right)\right| \leq \frac{1}{19 \cdot 9!} \approx 1.5 \times 10^{-7}
\end{aligned}
$$

