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QI1: For what «'s does > % converge?
n:

n=0
A)-1l<z<l1 B —1<x<1 C) —e<z<e
D) —e<e<e E) all

Solution Use the ratio test

Ant1 wn,+1

Qn

— 1 L
= lim (n+1)!  zn ILm n+1

n—oo

lim

n—oo

|z| = 0 for any value of x.

Since the limit is < 1 for every z, the ratio test says that the series converges (absolutely)
for all

Note: for the last lecture, this is the Taylor series, centered at a = 0 for the function
f(x) = e". But even though the series converges for all x, it might not be true that the
sum of the series is e*. (See last lecture where for a very simple example of where the
Taylor series (centered at 0) for a function converges for all x, but not to the original
function.)

Q2: What is lim 1009 ?

A)0 B)1 C)1000 D)

What do you conclude about lim 77 ?

n—oo '

Solution You can reason this out directly, but the simplest solution is to note that

n
000" _ .

(0.)
Zan = Y 100 converges (see Q1), and therefore lim a,, = lim 129"

n=0 n—oo n—oo

(Recall the Test for Divergence\: lf hm n a, # 0, the series would have to diverge!)

[0.@]
o/
The same argument for any value for -, works because ) 7y converges for all z.
n=0

The “moral” to take away for use late in the lecture is that the limit is 0 because

“factorial goes to oo faster than the powers of x (for any x)”



Assuming that its possible to find the n'* derivative f")(a) for everyn = 0,1, 2, ...
then it makes sense to write down a power series called the Taylor series of f centered at

fla)+ f@)(@—a)+ L@ —a)? + .+ B2 —a)" + L8 (@ — )™ -

n!

Usually applying the Ratio Test will tell you the radius of convergence of the series. But,
whatever that turns out to be, the question is still open: inside the interval of
convergence, is the sum of the Taylor series = f(x) or not?

To answer this, we break the series into “two parts”

"(q n Ln+l) n
f(@) + (@)@ = a) + L5 (e = af + o+ 0 @ = a)" + L (o — @)t
partial sum of terms up to the (z — a)" term + remainder

— T\(z) + = Ru(z)

Just as for any infinite series,

sum of the Taylor series = f(x) is equivalent to

lim (partial sums) = lim 7,,(z) = f(z) which is equivalent to

lim f () = Th(x) =0 which is equivalent to
lim R,(x) =0

So to decide whether f(x) = sum of its Taylor series for any particular =, we need to
check whether

lim R, (z) = 0.

n—oo

To do that, we need something that tells us the “size” of R, (x). This information comes
form the following “Taylor's Inequality.”



Taylor's Inequality ~ If If")(z)| < M forall zin [a — d, a + d,
that is, whenever
|z —a| <d,

M |z — a|"t?
then |R,(x)| < M-

Example Let's consider f(z) = e and its Taylor series at a = 0:
lta+o +%5 4 -

The first few Taylor polynomials (partial sums) are

To(ZC) =1
Ti(x)=1+=x
Tyz)=1+z+ 4+ 4

222 ( e* 277)

Consider the graphs just on the interval [ — 2, 2] (centered at 0):
Ta(x]
Téx}l

Td x)

A,

e

-2 2

Graph of ¢*and Taylor
polynomials T, JTI!TZTS
ata=0




Pick any z in [ — 2,2| : for that z it appears that
To(x), Ty (z), Tr(x), T5(z) — e*.

Notice also that when x close to a = 0, then even T (x) is very close to €”; when x is
farther from 0 (say, © = 1.9), we need a bigger n for T,,(x) to be very close to e*. It
looks like the Taylor polynomials at x are better approximations to €* when x is near the
center of the Taylor series, that is, near a = 0. In fact, every Taylor polynomial is
exactly = e at 0: 1 =€’ = Ty(0) = T1(0) = ... = T;,(0).

Now we'll settle matters using Taylor's Inequality: pick any d > 0 and consider the
interval | — d, d] (centered at 0).

Since, for every n, f("+1) (x) = e”, and €7 is an increasing function, the largest value of
£ (z) in the interval [ — d, d] occurs when = = d, that is, | V) (z)| < e? for every
xin[—d,d].

So, by Taylor's Inequality,

0 < |Ru(z)] < Sl2=U — ed 2" forany 2 in [ — d, d]

(n+1)! (n+1)!
. . €T n+
e?is just a constant, so as n — oo, e’ ("er—l)! —e?(0) =0

1

By the Squeeze theorem, lim |R,(x)| = 0, so lim R, (z) = 0.

Therefore, as remarked above,
e’ = the sum of its Taylor series for any z in [ — d, d| *)

But d was any positive number we chose at the beginning : d is arbitrary.
So (*) is true for any z i [ — 1, 1], but also for any x in [ — 1000, 1000] or ...

This shows that

e’ = the sum of its Taylor series

) 00
St L 4T =32 foranyn
n=0




Q3: The Taylor series forcosz ata = 0 is ¢y + 17 + 2% + c32® + ezt + -+
What is ¢4 ?

A) 3/4! B) 1/4! C) 0 D) —1/4! E) — §/4!
Solution ¢,, = %, SO:
f(x) =cosx f(0) =cos0 =1 co=1/01=1
fi(z) = —sinx f'(0) = —sin0 = cg=0/11=0
f'(z) = —cosz f"(0) = —cos0 = -1 o= —1/2!
f"(x) =sinx f"(0) =sin0 =0 c3 = 0/3!
f@(x) = cosx f®(0) = cos0 =1 cy = 1/4!
(repeating in

groups of 4)
In general, the numerators of the coefficients repeated in groups of 4:
1,0, —1,0,1,0, — 1,0, 1,
so the Taylor series, centered at a = 0 for cos z is
= co+ a1z + cx? + 32’ + caxt + ez’ + cga® + -

=1 +0z —% +02® +2 +02° —Z 4 ... =

o0

n=0

In any interval [ — d, d], |f"*(z)] <1 (because f™*V)(z)is one of & sinxzor + cosx
)and therefore, using Taylor's Inequality, we get

1 ‘.L—O‘"Jr] 1‘"+1
O§|R |— ‘ (n+1) n+1
. . on+1 . .
Since lim |£ I 1| = 0 (see comment after iClicker 02), the Squeeze Theorem shows
n—oo

that lim |R,,(x)| = 0, so lim R, (x) = 0. Therefore cos z = sum of its Taylor series at 0

for any z in [ — d.d]. Since d is an arbitrary positive number, this shows that

2 4 6
cosr=1— 4+

8
IS

T — (—1)”1 for all z.

(2n)!

=
>

e

(A similar argument shows that sin x is the sum of its Taylor series at 0 for all x.)



Three Very Important Taylor Series (at a = 0)

flz) =¢
O " 332 " 7;n,+l Tn,+2
T A CES
n=
Tn,(:r;) + R”<l)

Ratio Test shows that this series converges for all x, but is the sum e* ?

We used Taylor's Inequality to show that

00
n=0

f(x) =cosx

s 2n . n 2n n ZL‘2”'+2
) (gn)! =1- % + % +(-1) (fn)l + (=1 o 2n+2)!

1o, (LU) + Roy, (T)

N
~

Ratio Test shows that this series converges for all x , but is the sum cos = ?
We used Taylor's Inequality to show that

S 2n 2 2n
cosT = Z% =1-5+-+ (- 1)”(§n)! + - forallx
n=0
f(x) =sinx
0 1 n m2n+1 . ZS 1 n $2n+1 1 n-+1 x271+2§
ZO( —~D'aggm=2—5+ -+ (-V'gamy + (=" o7
n=
T2n+1 (33) + R27L+1 (~L)
Ratio Test shows that this series converges for all x , but is the sum sinz ?
We could use Taylor's Inequality (just as we did for cos x) to show that
. S n x2n+1 3:3 n w2n+l
sine =) (—1) G =T 3T +--4+ (-1 o1 T forallz

n=0



Example

3 5 7 9
. T x z

ol

Since this is true for all  we can substitute 2 for x in the series to get

. 2\ 2 ZL‘G IL'IO .’L‘M :L.IS
sin(z%) =2 — g+ 5 — T+ — o
1 . 2 o 1 2 CCG 1‘10 .Z‘M 1,18
SO fOSIH(IL')dIE —fo(x—g—i—?—?-i—ﬁ— )d$
1,3 137 1,11 1.15 l.l‘) 1
_(?_?"'11-51_157""1991 )0
-1t , 1 1 4 1 _ 1
=3~ sait 10m — o7 T Toor (exact sum of series
= exact value of
integral)
This is an alternating series, so we can_approximate the integral
Lso (2 ~ L 1 1 1
Jysin(z®)dz ~ 3 — =5 + 115 — 15 and we can say about the error that

1. _
| Jysin(z?)de — (3 — 25 + 175 — 7271) | < o & 1.5 x 1077



