
Some Taylor Series at    

1)    for 
     




                  

2)      for 
    




               

3)           


   
   
       for all   

4) sin  


     
                       for all 

5) cos  for all                


     
        

   

There series are “pretty” but also are useful as a starting point to obtain many others by
integration, differentiation, multiplication, or substitution (which might affect the interval of
convergence).  For example,
Substitute  for  in 1) to get 

    
      




             

 Since we substituted  for  and  was originally required, convergence is    
 now for , that is, for for that       

         is, for   


Integrate 1) to get

  arctan     for               
  

   
( )what happened to the constant of integration,  ?

Substitute then multiply  for  in 5),  the series by  to get  

            cos    for all   
 

  
     



Taylor series for cos  centered at  
  1      for all      

 
 

      

          

        



          
 

          
 
 

  
      
          for all  
   cos 

  
Notice that  for a fixed  value:  cos  as        and that
  for a fixed  value, the approximation
   cos   is better (smaller error) when  is near                          and worse (bigger error) when  is further from . 



If we want to approximate cos  for some specific , then we'll get a good approximation 
with less work (that is, using a smaller ) if we use the Taylor series centered as a point  
that's close to .
For example, suppose we want to approximate cos ° (in radian measure) cos  




To do this efficiently we should write a Taylor series for cos  centered at a point  close 
to a good choice is  

  
     

Q1:  In the Taylor series for cos centered at    


                                   

What is ?

A)   B)   C)   D)   E)       
         

Solution  The Taylor series for cos  centered at  is 


                                   

The coefficient      


 


         cos       


 
  

              
 
   sin        

              
 
    cos        

           
 
    sin         

 (begin repeating in groups of 4
           

 
   cos       

so
cos                       

                   

   the fact that the sum of the series  cos  for every  can be shown, using Taylor's
Inequality, in the same way as was done in the preceding lecture were we had   



Here are the first few Taylor polynomials for cos  centered at    


     


           
    

                
        

                     
             

               
     (    for all 
   cos 

  
Notice that  for a fixed  value:  cos  as        and that
  for a fixed  value, the approximation
   cos   is better (smaller error) when  is near        


              and worse (bigger error) when  is further from 





Example  Approximate cos °   For doing calculus with trig functions, we always need 
to use radian measure, so we convert cos ° cos We use a Taylor series with  




   
 

 , a point where its easy to find the coefficients for the Taylor series and also
close to :     

   
        

cos      
           

                        
This is an alternating series and we can approximate, say,
 cos  and the error is   

     
          

  cos     
        

                       
Because  is so close to , we get a very good approximation (small error) 

  
    

just using the Taylor polynomial  

 In fact,   (  
                rounded to 6 decimal

          places)
 This is exactly the same value a calculator gives for cos 46° (calculator set for
 degree measure, and answer rounded to  decimal places).

Example  Sometimes a Taylor series calculation can replace L'Hospital's Rule.
lim lim 

      
     

                        

                      lim lim 
    
    

   

 This is the same answer as you'd get with L'Hospital's Rule



Example
Q2:  What is lim

 


sin  
 use power series, not L'Hospital's Rule)

A)   B)   C)   D)   E) d.n.e.    


Solution  Write sin  as a Taylor series (substitute  for  in the series for  and then      
simplify:
 lim lim 

    
    sin    
           

          lim
  
  

 

           lim
 
 
 

 This is the same answer as you'd get with L'Hospital's Rule

Final example  (meant for fun)

The series that we discussed above also work for complex numbers where     
   

For example,

3)               


   
   
    for all complex numbers  

Let (where  is a real number) and rearrange:   

x          


      
     
       

Since etc            

             
    

     

           
    

      

           
    
         



          
    
       , so

  cos sin  a nice connection between     
      the eponential and trig functions
Letting  we get  
  cos sin     
      

    

     a formula that connects the  most important     
      constants in mathematics!    



We conclude with the final speech of Robin Goodfellow (Puck) in Shakespeare's A
Midsummer Night's Dream

   
Good luck!


