Some Taylor Series (at $a=0$)

$\begin{array}{ll}\text { 1) } \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} & \text { for }|x|<1 \\ \text { 2) } \frac{1}{1-x^{2}}=1+x^{2}+x^{4}+x^{6}+\cdots=\sum_{n=0}^{\infty} x^{2 n} & \text { for }|x|<1 \\ \text { 3) } e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots & \text { for all } x \\ \text { 4) } \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} & \text { for all } x \\ \text { 5) } \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots & \text { for all } x\end{array}$
There series are "pretty" but also are useful as a starting point to obtain many others by integration, differentiation, multiplication, or substitution (which might affect the interval of convergence). For example,

Substitute $3 x$ for x in 1) to get

$$
\frac{1}{1+9 x^{2}}=1-9 x^{2}+81 x^{4}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} 9^{n} x^{2 n}
$$

Since we substituted $3 x$ for x and $|x|<1$ was originally required, convergence is now for $|3 x|<1$, that is, for $|x|<\frac{1}{3}$ for $|3 x|<1$, that

$$
\text { is, for }|x|<\frac{1}{3}
$$

Integrate 1) to get
$\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad$ for $|x|<1$
(what happened to the constant of integration, C ?)

Substitute x^{2} for x in 5), then multiply the series by x to get
$x \cos x^{2}=x\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{(2 n)!}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{(2 n)!} \quad$ for all x

Taylor series for $\cos x$ centered at 0

$$
\begin{array}{rr}
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots & \text { for all } x \\
T_{0}(x)=1 & \\
T_{1}(x)=1+0 x=1 & \\
T_{2}(x)=1-\frac{x^{2}}{2} & \\
T_{3}(x)=1-\frac{x^{2}}{2}+0 x^{3} & \\
T_{4}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24} & \\
\vdots & \text { for all } x \\
\downarrow &
\end{array}
$$

Notice that and that
for a fixed x value: $T_{n}(x) \rightarrow \cos x$ as $n \rightarrow \infty$
for a fixed n value, the approximation

$$
\cos x \approx T_{n}(x) \text { is better (smaller error) when } x \text { is near } a=0
$$ and worse (bigger error) when x is further from 0 .

If we want to approximate $\cos x$ for some specific x, then we'll get a good approximation with less work (that is, using a smaller n) if we use the Taylor series centered as a point a that's close to x.

For example, suppose we want to approximate $\cos 46^{\circ}=$ (in radian measure) $\cos \frac{46 \pi}{180}$.
To do this efficiently we should write a Taylor series for $\cos x$ centered at a point a close to $\frac{46 \pi}{180}$: a good choice is $a=\frac{\pi}{4}=\frac{45 \pi}{180}$.

Q1: In the Taylor series for $\cos x$ centered at $a=\frac{\pi}{4}$:

$$
c_{0}+c_{1}\left(x-\frac{\pi}{4}\right)+c_{2}\left(x-\frac{\pi}{4}\right)^{2}+c_{3}\left(x-\frac{\pi}{4}\right)^{3}+c_{4}\left(x-\frac{\pi}{4}\right)^{4}+\cdots
$$

What is c_{4} ?
A) $-\frac{1}{4!}$
B) $\frac{1}{4!}$
C) $-\frac{1}{4!\sqrt{2}}$
D) $\frac{1}{4!\sqrt{2}}$
E) $\frac{1}{5!\sqrt{2}}$

Solution The Taylor series for $\cos x$ centered at $\frac{\pi}{4}$ is

$$
c_{0}+c_{1}\left(x-\frac{\pi}{4}\right)+c_{2}\left(x-\frac{\pi}{4}\right)^{2}+c_{3}\left(x-\frac{\pi}{4}\right)^{3}+c_{4}\left(x-\frac{\pi}{4}\right)^{4}+\cdots
$$

The coefficient $c_{n}=\frac{f^{(n)}\left(\frac{\pi}{4}\right)}{n!}$.

$f(x)$	$=\cos x$	$f\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$	$c_{0}=\frac{1}{\sqrt{2}}$
$f^{\prime}(x)$	$=-\sin x$	$f^{\prime}\left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$	$c_{1}=-\frac{1}{\sqrt{2}}$
$f^{\prime \prime}(x)$	$=-\cos x$	$f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$	$c_{2}=-\frac{1}{2!\sqrt{2}}$
$f^{\prime \prime \prime}(x)$	$=\sin x$	$f^{\prime \prime \prime}\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$	$c_{3}=\frac{1}{3!\sqrt{2}}$

(begin repeating in groups of 4)
$f^{(4)}(x)=\cos x$
$f^{(4)}\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$c_{4}=\frac{1}{4!\sqrt{2}}$
so
$\cos x=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)-\frac{1}{2!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{2}+\frac{1}{3!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{3}+\frac{1}{4!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{4}-\cdots$
(the fact that the sum of the series $=\cos x$ for every x can be shown, using Taylor's Inequality, in the same way as was done in the preceding lecture were we had $a=0$.)

Here are the first few Taylor polynomials for $\cos x$ centered at $a=\frac{\pi}{4}$:

$$
\begin{aligned}
T_{0}(x) & =\frac{1}{\sqrt{2}} \\
T_{1}(x) & =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right) \\
T_{2}(x) & =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)-\frac{1}{2!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{2} \\
T_{3}(x) & =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)-\frac{1}{2!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{2}+\frac{1}{3!\sqrt{2}}\left(x-\frac{\pi}{4}\right)^{3} \\
& \vdots \\
& \downarrow \\
& \quad(\text { for all } x)
\end{aligned}
$$

Notice that \quad for a fixed x value: $T_{n}(x) \rightarrow \cos x$ as $n \rightarrow \infty$ and that
for a fixed n value, the approximation
$\cos x \approx T_{n}(x)$ is better (smaller error) when x is near $a=\frac{\pi}{4}$ and worse (bigger error) when x is further from $\frac{\pi}{4}$

Example Approximate $\cos 46^{\circ}$. For doing calculus with trig functions, we always need to use radian measure, so we convert $\cos 46^{\circ}=\cos \frac{46 \pi}{180}$. We use a Taylor series with $a=\frac{\pi}{4}=\frac{45 \pi}{180}$, a point where its easy to find the coefficients for the Taylor series and also close to $\frac{46 \pi}{180}: x-a=\frac{46 \pi}{180}-\frac{45 \pi}{180}=\frac{\pi}{180}$
$\cos \frac{46 \pi}{180}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(\frac{\pi}{180}\right)-\frac{1}{2!\sqrt{2}}\left(\frac{\pi}{180}\right)^{2}+\frac{1}{3!\sqrt{2}}\left(\frac{\pi}{180}\right)^{3}+\frac{1}{4!\sqrt{2}}\left(\frac{\pi}{180}\right)^{4}-\cdots$
This is an alternating series and we can approximate, say,

$$
\begin{aligned}
& \cos \frac{46 \pi}{180}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(\frac{\pi}{180}\right)-\frac{1}{2!\sqrt{2}}\left(\frac{\pi}{180}\right)^{2} \text { and the error is } \\
& \left|\cos \frac{46 \pi}{180}-\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(\frac{\pi}{180}\right)-\frac{1}{2!\sqrt{2}}\left(\frac{\pi}{180}\right)^{2}\right)\right|<\frac{1}{3!\sqrt{2}}\left(\frac{\pi}{180}\right)^{3} \approx 6.3 \times 10^{-7}
\end{aligned}
$$

Because $\frac{46 \pi}{180}$ is so close to $a=\frac{\pi}{4}=\frac{45 \pi}{180}$, we get a very good approximation (small error) just using the Taylor polynomial $T_{2}(x)$.

In fact, $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\left(\frac{\pi}{180}\right)-\frac{1}{2!\sqrt{2}}\left(\frac{\pi}{180}\right)^{2}=0.694658$ (rounded to 6 decimal places)

This is exactly the same value a calculator gives for $\cos 46^{\circ}$ (calculator set for degree measure, and answer rounded to 6 decimal places).

Example Sometimes a Taylor series calculation can replace L'Hospital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-e}}{x} & =\lim _{x \rightarrow 0} \frac{1}{x}\left(\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right)-\left(\left(1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots\right)\right.\right. \\
& =\lim _{x \rightarrow 0} \frac{1}{x}\left(2 x+2 \frac{x^{3}}{3!}+2 \frac{x^{5}}{5!}+\ldots\right)=\lim _{x \rightarrow 0}\left(2+2 \frac{x^{2}}{3!}+2 \frac{x^{4}}{5!}+\ldots\right)=2
\end{aligned}
$$

(This is the same answer as you'd get with L'Hospital's Rule)

Example

Q2: What is $\lim _{x \rightarrow 0} \frac{\sin x^{2}-x^{2}}{x^{2}}$ (use power series, not L'Hospital's Rule)
A) 0
B) 1
C) -1
D) $\frac{1}{2}$
E) d.n.e.

Solution Write $\sin x^{2}$ as a Taylor series (substitute x^{2} for x in the series for x^{2}) and then simplify:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x^{2}-x^{2}}{x^{2}}= & \lim _{x \rightarrow 0} \frac{1}{x^{2}}\left(\left(x^{2}-\frac{x^{6}}{5!}+\frac{x^{10}}{5!}-\ldots\right)-x^{2}\right) \\
& =\lim _{x \rightarrow 0} \frac{1}{x^{2}}\left(\left(-\frac{x^{6}}{5!}+\frac{x^{10}}{5!}-\ldots\right)\right. \\
& =\lim _{x \rightarrow 0}\left(-\frac{x^{4}}{5!}+\frac{x^{8}}{5!}-\ldots\right)=0
\end{aligned}
$$

(This is the same answer as you'd get with L'Hospital's Rule)

Final example (meant for fun)

The series that we discussed above also work for complex numbers $z=a+b i$ (where $i^{2}=-1$).

For example,
3) $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{x^{z n}}{n!}+\cdots \quad$ for all complex numbers $z=a+b i$

Let $z=i x$ (where x is a real number) and rearrange:
$e^{i \mathbf{x}}=\sum_{n=0}^{\infty} \frac{(i x)^{n}}{n!}=1+(i x)+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\cdots \cdots \cdot$
Since $i^{2}=-1, i^{4}=1,1^{6}=-1$, etc

$$
\begin{aligned}
& =\left(1+\frac{(i x)^{2}}{2!}+\frac{(i x)^{4}}{4!}+\cdots\right)+\left(i x+\frac{(i x)^{3}}{3!}+\frac{(i x)^{5}}{5!}+\right) \\
& =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)+\left(i x+\frac{(i x)^{3}}{3!}+\frac{(i x)^{5}}{5!}+\right) \\
& =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)+i\left(x+\frac{i^{2} x^{3}}{3!}+\frac{i^{4} x^{5}}{5!}+\right)
\end{aligned}
$$

$$
\begin{aligned}
=\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\right), \text { so } \\
e^{i x}=\cos x+i \sin x \text { a nice connection between } \\
\text { the eponential and trig functions }
\end{aligned}
$$

Letting $x=\pi$, we get

$$
\begin{aligned}
& e^{i \pi}=\cos \pi+i \sin \pi \\
& e^{i \pi}=1+i(0) \\
& e^{i \pi}=1 \\
& e^{i \pi}-1=0
\end{aligned}
$$

a formula that connects the 5 most important constants in mathematics!

We conclude with the final speech of Robin Goodfellow (Puck) in Shakespeare's A Midsummer Night's Dream

ROBIN

If we shadows have offended,
Think but this, and all is mended-
That you have but slumbered here
While these visions did appear.
And this weak and idle theme,
No more yielding but a dream,
Gentles, do not reprehend.
If you pardon, we will mend.
And, as I am an honest Puck,
If we have unearnèd luck
Now to 'scape the serpent's tongue,
We will make amends ere long.
Else the Puck a liar call.
So good night unto you all.
Give me your hands if we be friends,
And Robin shall restore amends.

Good luck!

