Math 132, Spring 2017 **Discussion Sheet Solutions** April 11, 2017

1. For which of the following series can you determine convergence or divergence by a comparison to $\sum_{n=1}^{\infty} \frac{1}{5n}$?

A)
$$\sum_{n=1}^{\infty} \frac{1}{5n-3}$$

A)
$$\sum_{n=1}^{\infty} \frac{1}{5n-3}$$
 B) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{5n+6}$ C) $\sum_{n=1}^{\infty} \frac{1}{5n+7}$

$$C) \sum_{n=1}^{\infty} \frac{1}{5n+7}$$

The series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{5n+6}$ cannot be used in a comparison test since its terms are not all positive.

 $\frac{1}{5n-3} > \frac{1}{5n}$ and $\sum_{n=1}^{\infty} \frac{1}{5n} = \frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{n}$ which diverges. So the "larger" series $\sum_{n=1}^{\infty} \frac{1}{5n-3}$ must also diverge.

 $\frac{1}{5n+7} < \frac{1}{5n}$ so a comparison to the divergent series $\sum_{n=1}^{\infty} \frac{1}{5n}$ ($= \infty$) does not help us decide whether the "smaller" series $\sum_{n=1}^{\infty} \frac{1}{5n+7}$ converges or diverges

- 2. Consider the series $\frac{1}{2} \frac{1}{4} + \frac{1}{8} \frac{1}{16} + \frac{1}{32} \cdots$
 - a) Does the series converge or diverge? Why? Can you give two equally good reasons?

The series is an <u>alternating series</u>: $\sum_{n=1}^{\infty} (-1)^{n+1} b_n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2^n}$. Since $b_n = \frac{1}{2^n} > 0$, and $b_n \to 0$, and $b_n > b_{n+1}$, the alternating series test applies and the series converges.

This series is <u>also</u> a geometric series with $a = \frac{1}{2}$ and $r = -\frac{1}{2}$. Since |r| < 1, the series converges.

b) What is the sum of the series, s?

For an alternating series, we can't usually determine the sum s. But since this is also a convergent geometric series, we know its sum is $\frac{a}{1-r} = \frac{\frac{1}{2}}{1-(-\frac{1}{2})} = \frac{1}{3}$.

c) In this particular example we could actually find $s = \frac{1}{3}$. But for any alternating series, we can at least <u>approximate</u> s by a partial sum s_n .

In this example, we can write

$$|s - s_{10}| \le b_{11} = \frac{1}{2^{11}} = \frac{1}{2048}$$
 (*)

Does the error estimate (*) turn out to be correct? (you probably need a calculator)

For the series given above, $s_{10}=0.333011612354086$ (rounded to 15 decimal places) and we know that $s=\frac{1}{3}$ so the error estimate works out as predicted:

$$|s - s_{10}| = |\frac{1}{3} - 0.333011612354086| = 0.0003217209792477083$$

$$< \frac{1}{2048} = 0.000488281250000$$

d) In this example, is the approximation s_{10} larger or smaller than s? Since the alternating series begins with a positive term $b_1 = \frac{1}{2}$, the <u>even partial</u> sums <u>increase</u> to the sum s. So s_{10} is smaller than s and $s - s_{10} > 0$.