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Thus  represents a counterclockwise rotation if  is chosen around the originG Ð  !Ñ)
through the angle ,  a rescaling factor of .) followed by <

If we use  as a new basis for , then the change of coordinate matrixU ‘œ Ö ×Re Im@ß @ #
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The effect of , broken into several steps, is then:E

      B B B B BÈ T œ Ó È G Ó œ GT [      [" "
U U

         switch to                             rotate and dilate
    -coordinates by a factor of U                      <
     in the new coordinates

       [È TG Ó œ TGT EB B œ BU
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                   switch back to
      standard coordinates

 1) If ,  represents a “pure“ rotation (in the new coordinates)< œ " G

 2) If  then the successive images <  "ß ß œ E ß ÞÞÞß œ E ß ÞÞÞB B B B B! " ! 8" 8

     move further and further away from the origin (assuming )B !! Á

 3) If , then the successive images <  " ß œ E ß ÞÞÞß œ E ß ÞÞÞB B B B B! " ! 8" 8

     approach the origin.
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To find the corresponding eigenspace:  solve ÐE  MÑ- B !œ
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A very handy observation:  the task can now be simplified because when we set out to solve
ÐE  MÑ- B !œ , we  know that there are nontrivial solutions because we already already know
that det , that is, that   an eigenvalue.  Since  is not invertible, this means,ÐE  MÑ œ ! E  M- - -is
that its rows (columns) are linearly dependent.    , that means that In the case one of the# ‚ #
rows in the augmented matrix is a multiple of the other each of the two equations and therefore 
states the same relationship between andB B" #  .  We can simply use (either) one of the equations
to see the relationship and find the eigenspace.

The first equation says
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In the notation of the Theorem, we have:
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The main theorem, above ( ) states that  factors as whereTheorem 9 in the text E TGT ß"
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  I checked myself  for errors using Matlab:  rounded to 4 places, Matlab
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What does this mean geometrically?

Take Re Im  as a new basis.U œ Ö × œ Ö ß ×
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Write -coordinates as .  Then  is the change of coordinates matrix fromU B ß C Tw w

U-coordinates to standard coordinates:
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G < œ "Ñ œ represents a “pure rotation” (because the rescaling factor .  So  cos ) (
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and sin .  From Matlab or a calculator, we can choose) œ
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So:  if we start with B œ
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Then  rotates:   the location of the point (inG GT œ"B
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An alternate way of picturing the action of  this version plots everything in theE À
standard -  plane:B C
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    Ð Ñthis is the -coordinate vector of but it is plotted below as a point in the -  planeU B, B C
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The figure below shows the successive iterates if we start with  and plot ,B B! !œ
"
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B B B B B B" œ E ß œ E ß ÞÞÞß œ E! # " #% #$.

The images run along an elliptical “orbit” even though  is a “pure” rotation , G Ð< œ "Ñ
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To briefly illustrate the case where let <  "ß E œ
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     matrix  in the preceding example)œ %‡Ð E

Multiplying a square matrix by  multiplies the eigenvalues by  but doesn't change the% %
eigenvectors ( why?  check this from the definitions of eigenvalue and eigenvector )
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  I checked myself for errors using Matlab:  rounded to 4 places,
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where cos , sin .   Again, we can choose ) ) )œ œ ¸ !Þ&!&%(
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or °   The matrix  rotates the new coordinate vector and then rescales it by a) ¸ #)Þ*' Þ G
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The following figure illustrates the first few iterations, starting with B! œ À
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