Theorem Suppose A is a real 2×2 matrix with a complex eigenvalue $a-b i$ and a corresponding eigenvector \boldsymbol{v}. Then $A=P C P^{-1}$
where $P=[\operatorname{Re} \boldsymbol{v} \operatorname{Im} \boldsymbol{v}]$ and $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$

Interpretation:

$$
\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \text { can be written as } r\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text {, where } r=\sqrt{a^{2}+b^{2}} \text {. }
$$

Thus C represents a counterclockwise rotation (if θ is chosen >0) around the origin through the angle θ, followed by a rescaling factor of r.

If we use $\mathcal{B}=\{\operatorname{Re} \boldsymbol{v}, \operatorname{Im} \boldsymbol{v}\}$ as a new basis for \mathbb{R}^{2}, then the change of coordinate matrix $P_{\mathcal{B}}=P=[\operatorname{Re} \boldsymbol{v} \operatorname{Im} \boldsymbol{v}]$.

The effect of A, broken into several steps, is then:
\boldsymbol{x}

$\mapsto \quad P^{-1} \boldsymbol{x}=[\boldsymbol{x}]_{\mathcal{B}}$	\mapsto
switch to	$C[\boldsymbol{x}]_{\mathcal{B}}=C P^{-1} \boldsymbol{x}$
\mathcal{B}-coordinates	rota and dilate
by a factor of r	
in the new coordinates	

$$
\begin{aligned}
& \qquad \quad P C[\boldsymbol{x}]_{\mathcal{B}}=P C P^{-1} \boldsymbol{x}=A \boldsymbol{x} \\
& \text { switch back to } \\
& \text { standard coordinates }
\end{aligned}
$$

1) If $r=1, C$ represents a "pure" rotation (in the new coordinates)
2) If $r>1$, then the successive images $x_{0}, x_{1}=A x_{0}, \ldots, x_{n+1}=A x_{n}, \ldots$ move further and further away from the origin (assuming $x_{0} \neq 0$)
3) If $r<1$, then the successive images $x_{0}, x_{1}=A x_{0}, \ldots, x_{n+1}=A x_{n}, \ldots$ approach the origin.

Example Let $A=\left[\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{3}{4} & \frac{5}{4}\end{array}\right]$. The characteristic equation is $\operatorname{det}\left[\begin{array}{cc}\frac{1}{2}-\lambda & -\frac{1}{2} \\ \frac{3}{4} & \frac{5}{4}-\lambda\end{array}\right]=\left(\frac{1}{2}-\lambda\right)\left(\frac{5}{4}-\lambda\right)+\frac{3}{8}=\frac{5}{8}-\frac{7}{4} \lambda+\lambda^{2}+\frac{3}{8}$
$=\lambda^{2}-\frac{7}{4} \lambda+1=0$, which has the same solutions as $4 \lambda^{2}-7 \lambda+4=0$
The eigenvalues are $\lambda=\frac{7 \pm \sqrt{49-64}}{8}=\frac{7}{8} \pm \frac{\sqrt{-15}}{8}=\frac{7}{8} \pm \frac{\sqrt{15}}{8} i$.
For no particular reason, choose the eigenvalue $\lambda=\frac{7}{8}-\frac{\sqrt{15}}{8} i$.

To find the corresponding eigenspace: solve $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\frac{1}{2}-\left(\frac{7}{8}-\frac{\sqrt{15}}{8} i\right) & -\frac{1}{2} & 0 \\
\frac{3}{4} & \frac{5}{4}-\left(\frac{7}{8}-\frac{\sqrt{15}}{8} i\right) & 0
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{3}{8}+\frac{\sqrt{15}}{8} i & -\frac{1}{2} & 0 \\
\frac{3}{4} & \frac{3}{8}+\frac{\sqrt{15}}{8} i & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{ccc}
-3+\sqrt{15} i & -4 & 0 \\
6 & 3+\sqrt{15} i & 0
\end{array}\right] .
\end{aligned}
$$

A very handy observation: the task can now be simplified because when we set out to solve $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$, we already know that there are nontrivial solutions because we already know that $\operatorname{det}(A-\lambda I)=0$, that is, that $\lambda \underline{\text { is }}$ an eigenvalue. Since $A-\lambda I$ is not invertible, this means, that its rows (columns) are linearly dependent. In the 2×2 case, that means that one of the rows in the augmented matrix is a multiple of the other and therefore each of the two equations states the same relationship between x_{1} and x_{2}. We can simply use (either) one of the equations to see the relationship and find the eigenspace.

The first equation says

$$
(-3+\sqrt{15} i) x_{1}-4 x_{2}=0, \quad \text { that is, } \quad x_{2}=\frac{-3+\sqrt{15} i}{4} x_{1}
$$

To find an eigenvector, we can just choose $x_{1}=1$ and get $\left[\begin{array}{c}1 \\ \frac{-3+\sqrt{15} i}{4}\end{array}\right]$. A neater
eigenvector would be 4 times this one: $\boldsymbol{v}=\left[\begin{array}{c}4 \\ -3+\sqrt{15}\end{array} i\right]$.

In the notation of the Theorem, we have:

- $A=\left[\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{3}{4} & \frac{5}{4}\end{array}\right]$
- An eigenvalue $\lambda=\frac{7}{8}-\frac{\sqrt{15}}{8} i$ (so $a=\frac{7}{8}, b=\frac{\sqrt{15}}{8}$), and
- A corresponding eigenvector $\boldsymbol{v}=\left[\begin{array}{c}4 \\ -3+\sqrt{15} i\end{array}\right]=\left[\begin{array}{c}4+0 \cdot i \\ -3+\sqrt{15} i\end{array}\right]$, for

$$
\text { For this } \boldsymbol{v}: \quad \operatorname{Re} \boldsymbol{v}=\left[\begin{array}{c}
4 \\
-3
\end{array}\right] \text { and } \operatorname{Im} \boldsymbol{v}=\left[\begin{array}{c}
0 \\
\sqrt{15}
\end{array}\right] .
$$

The main theorem, above (Theorem 9 in the text) states that A factors as $P C P^{-1}$, where

$$
\begin{aligned}
& C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{7}{8} & -\frac{\sqrt{15}}{8} \\
\frac{\sqrt{15}}{8} & \frac{7}{8}
\end{array}\right] \text { and } \\
& P=[\operatorname{Re} \boldsymbol{v} \operatorname{Im} \boldsymbol{v}]=\left[\begin{array}{cc}
4 & 0 \\
-3 & \sqrt{15}
\end{array}\right] \text {, that is } \\
& A=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{4} & \frac{5}{4}
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
-3 & \sqrt{15}
\end{array}\right]\left[\begin{array}{cc}
\frac{7}{8} & -\frac{\sqrt{15}}{8} \\
\frac{\sqrt{15}}{8} & \frac{7}{8}
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
-3 & \sqrt{15}
\end{array}\right]^{-1} .
\end{aligned}
$$

I checked myself for errors using Matlab: rounded to 4 places, Matlab gives $A P=\left[\begin{array}{rr}3.5 & -1.9365 \\ -.75 & 4.8412\end{array}\right]=P C$

What does this mean geometrically?
$\begin{aligned} & \text { Take } \mathcal{B}=\{\operatorname{Re} \boldsymbol{v} \operatorname{Im} \boldsymbol{v}\}=\left\{\left[\begin{array}{c}4 \\ -3\end{array}\right],\left[\begin{array}{c}0 \\ \sqrt{15}\end{array}\right]\right\} \text { as a new basis. } \\ & \uparrow \\ & \boldsymbol{b}_{\mathbf{1}} \quad \boldsymbol{b}_{\mathbf{2}}\end{aligned}$
Write \mathcal{B}-coordinates as x^{\prime}, y^{\prime}. Then P is the change of coordinates matrix from \mathcal{B}-coordinates to standard coordinates:

$$
\begin{aligned}
& P[\boldsymbol{x}]_{B}=\boldsymbol{x}, \quad \text { that is } \\
& P\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

As we noted in the last lecture, we can always rewrite a matrix like C as

$$
C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]=r\left[\begin{array}{cc}
\frac{a}{r} & -\frac{b}{r} \\
\frac{b}{r} & \frac{a}{r}
\end{array}\right]=r\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \text { where } r=\sqrt{a^{2}+b^{2}} .
$$

In this example , $r=\sqrt{a^{2}+b^{2}}=\sqrt{\frac{49}{64}+\frac{15}{64}}=\sqrt{\frac{64}{64}}=1$, so

$$
C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]=1 \cdot\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\frac{7}{8} & -\frac{\sqrt{15}}{8} \\
\frac{\sqrt{15}}{8} & \frac{7}{8}
\end{array}\right]
$$

C represents a "pure rotation" (because the rescaling factor $r=1$). So $\cos \theta=\frac{7}{8}$
and $\sin \theta=\frac{\sqrt{15}}{8}$. From Matlab or a calculator, we can choose $\theta \approx 0.5054$ (radians) $\approx 28.96^{\circ}$.

So: if we start with $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
P^{-1} converts into \mathcal{B}-coordinates: $\quad P^{-1} \boldsymbol{x}=$ the \mathcal{B}-coordinate vector of the same

$$
\text { point: }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
.25 \\
.1936
\end{array}\right]
$$

Then C rotates:
$C P^{-1} \boldsymbol{x}=$ the location of the point (in \mathcal{B}-coordinates) after the rotation $=\left[\begin{array}{c}.125 \\ .2905\end{array}\right]$

Then P converts back to standard coordinates.
$A \boldsymbol{x}=P C P^{-1} \boldsymbol{x}=$ the location of the coordinates point (in standard coordinates) after the rotation: $\left[\begin{array}{c}.5 \\ .75\end{array}\right]$

An alternate way of picturing the action of A : this version plots everything in the standard $x-y$ plane:

$$
\begin{aligned}
& \boldsymbol{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& P^{-1} \boldsymbol{x}=\left[\begin{array}{c}
.25 \\
.1936
\end{array}\right]
\end{aligned}
$$

(this is the \mathcal{B}-coordinate vector of \boldsymbol{x}, but it is plotted below as a point in the x-y plane)

$$
C P^{-1} \boldsymbol{x}=\left[\begin{array}{c}
.125 \\
.2905
\end{array}\right] \text { is the location after rotation by } \theta \approx 28.96^{\circ}
$$

(this is also a \mathcal{B}-coordinate vector, but it's plotted in the x-yplane)

$$
A \boldsymbol{x}=P C P^{-1} \boldsymbol{x}=\left[\begin{array}{c}
.5 \\
.75
\end{array}\right] \text { is the final location of the point }
$$

(in standard coordinates and plotted in the $x-y$ plane)

The figure below shows the successive iterates if we start with $\boldsymbol{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and plot \boldsymbol{x}_{0}, $x_{1}=A x_{0}, x_{2}=A x_{1}, \ldots, x_{24}=A x_{23}$.

The images run along an elliptical "orbit" - even though C is a "pure" rotation ($r=1$), the new coordinate basis vectors $\left[\begin{array}{c}4 \\ -3\end{array}\right],\left[\begin{array}{c}0 \\ \sqrt{15}\end{array}\right]$ are not perpendicular and have different lengths, so the orbit isn't a circle.

To briefly illustrate the case where $r>1$, let $A=\left[\begin{array}{cc}2 & -2 \\ 3 & 5\end{array}\right]$

$$
=4 *(\text { matrix } A \text { in the preceding example })
$$

Multiplying a square matrix by 4 multiplies the eigenvalues by 4 but doesn't change the eigenvectors (why? - check this from the definitions of eigenvalue and eigenvector)

So $A=\left[\begin{array}{cc}2 & -2 \\ 3 & 5\end{array}\right]$ has a complex eigenvalue $\lambda=\frac{7}{2}-\frac{\sqrt{15}}{2} i$ with a corresponding
eigenvector $\left[\begin{array}{c}4 \\ -3+\sqrt{15} i\end{array}\right]$. According to the Theorem, we can write

$$
\left[\begin{array}{cc}
2 & -2 \\
3 & 5
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
-3 & \sqrt{15}
\end{array}\right]\left[\begin{array}{cc}
\frac{7}{2} & -\frac{\sqrt{15}}{2} \\
\frac{\sqrt{15}}{2} & \frac{7}{2}
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
-3 & \sqrt{15}
\end{array}\right]^{-1}
$$

I checked myself for errors using Matlab: rounded to 4 places, Matlab gives

$$
A P=\left[\begin{array}{cc}
14 & -7.7460 \\
-3 & 19.3649
\end{array}\right]=P C
$$

Then write $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]=r\left[\begin{array}{cc}\frac{a}{r} & -\frac{b}{r} \\ \frac{b}{r} & \frac{a}{r}\end{array}\right]=4\left[\begin{array}{cc}\frac{7}{8} & -\frac{\sqrt{15}}{8} \\ \frac{\sqrt{15}}{8} & \frac{7}{8}\end{array}\right]$

$$
=4\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

where $\cos \theta=\frac{7}{8}, \sin \theta=\frac{\sqrt{15}}{8}$. Again, we can choose $\theta \approx 0.5054$ or $\theta \approx 28.96^{\circ}$. The matrix C rotates the new coordinate vector and then rescales it by a factor of 4 .

The following figure illustrates the first few iterations, starting with $\boldsymbol{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$:

