Example: Orthogonal Decomposition Theorem

Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ -1 \\ 1\end{array}\right]\right\} \subseteq \mathbb{R}^{4}$. (These vectors form an orthogonal basis for W : check!)
and let $\boldsymbol{y}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. Find the point in W closest to \boldsymbol{y} and find the distance from \boldsymbol{y} to W.

$$
\widehat{\boldsymbol{y}}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} \boldsymbol{u}_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} \boldsymbol{u}_{2}+\frac{y \cdot u_{3}}{u_{3} \cdot u_{3}} \boldsymbol{u}_{3}
$$

$$
=\frac{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]}{\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\frac{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\frac{\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]}{\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]}\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

$$
=\frac{1}{1}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+\frac{4}{6}\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]+\frac{0}{2}\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]=\frac{1}{1}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+\frac{2}{3}\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{4}{3} \\
1 \\
\frac{2}{3} \\
\frac{2}{3}
\end{array}\right]=\text { the point in } W
$$

closest to \boldsymbol{y}.
$\left[\begin{array}{l}\frac{4}{3} \\ 1 \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]$ is the "best approximation" to $\boldsymbol{y}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ using a point from W.
The distance from \boldsymbol{y} to $W=\|\boldsymbol{z}\|=\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|=\left\|\left[\begin{array}{c}-\frac{1}{3} \\ 0 \\ \frac{1}{3} \\ \frac{1}{3}\end{array}\right]\right\|$

$$
=\sqrt{\frac{1}{9}+\frac{1}{9}+\frac{1}{9}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} .
$$

We can also think of $\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|$ as being the error committed when $\widehat{\boldsymbol{y}}$ is used as an approximation for \boldsymbol{y}. If $\boldsymbol{v} \in W$ and $\boldsymbol{v} \neq \widehat{\boldsymbol{y}}$, then $\|\boldsymbol{y}-\boldsymbol{v}\|>\frac{\sqrt{3}}{3}$.

Example (continuation from first side)

An orthonormal basis for the same subspace W of \mathbb{R}^{4} can be obtained by normalizing the original basis to get

$$
\left\{\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
2 / \sqrt{6} \\
0 \\
1 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]\right\}
$$

Let $U=\left[\begin{array}{rrr}0 & 2 / \sqrt{6} & 0 \\ 1 & 0 & 0 \\ 0 & 1 / \sqrt{6} & -1 / \sqrt{2} \\ 0 & 1 / \sqrt{6} & 1 / \sqrt{2}\end{array}\right]$ and $U^{T}=\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ 2 / \sqrt{6} & 0 & 1 / \sqrt{6} & 1 / \sqrt{6} \\ 0 & 0 & -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$

Then $U U^{T}=\left[\begin{array}{rrrr}\frac{2}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & 0 & -\frac{1}{3} & \frac{2}{3}\end{array}\right]$
$U U^{T}$ is 4×4 and defines a mapping $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, T(\boldsymbol{y})=U U^{T} \boldsymbol{y}$
$U U^{T}$ is the matrix from the orthogonal projection mapping of \mathbb{R}^{4} onto W :

$$
U U^{T} \boldsymbol{y}=\widehat{\boldsymbol{y}}
$$

For example, from the other side, $U U^{T}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}\frac{4}{3} \\ 1 \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]$.
The range (= column space) for $U U^{T}$ is the subspace W of \mathbb{R}^{4}.

