VERSION 1, with 2 PARTS (previously done): suppose T is a <u>linear</u> function, where $T: \mathbb{R}^n \to \mathbb{R}^m$, with standard matrix A

T is <u>onto</u> : that is, for <u>every</u> $\boldsymbol{b} \in \mathbb{R}^m$ there is <u>at least one</u> $\boldsymbol{x} \in \mathbb{R}^n$ for which $T(\boldsymbol{x}) = \boldsymbol{b}$	For <u>every</u> $\boldsymbol{b} \in \mathbb{R}^m$, there is <u>at least</u> one $\boldsymbol{x} \in \mathbb{R}^n$ for which $A\boldsymbol{x} = \boldsymbol{b}$ (that is, the mapping $\boldsymbol{x} \mapsto A\boldsymbol{x}$ is onto
\$	(see Theorem 4, p. 43)
For every $\boldsymbol{b} \in \mathbb{R}^m$, the equation $T(\boldsymbol{x}) = \boldsymbol{b}$ has <u>at least</u> one solution	<u>Every</u> vector $\boldsymbol{b} \in \mathbb{R}^m$ is a linear combination of the columns of A
	(<i>See Theorem 4, p. 43</i>)
	The columns of A span \mathbb{R}^m
	(<i>see Theorem 4, p. 43</i>)
	A has a pivot in every row.
<i>T</i> is <u>one-to-one</u> : that is, for <u>every</u> $\boldsymbol{b} \in \mathbb{R}^m \iff$ there is <u>at most one</u> $\boldsymbol{x} \in \mathbb{R}^n$ for which $T(\boldsymbol{x}) = \boldsymbol{b}.$	For every $\boldsymbol{b} \in \mathbb{R}^m$, there is at most one $\boldsymbol{x} \in \mathbb{R}^n$ for which $A\boldsymbol{x} = \boldsymbol{b}$.
\$	\$
For every $\boldsymbol{b} \in \mathbb{R}^m$, the equation $T(\boldsymbol{x}) = \boldsymbol{b}$ has at most one solution.	For every $\boldsymbol{b} \in \mathbb{R}^m$, the equation $\boldsymbol{A}x = \boldsymbol{b}$ has at most one solution.
(<i>See Theorem 11, p. 88</i>)	\$
The equation $T(\mathbf{x}) = 0$ has only the trivial \Leftrightarrow solution (namely, $\mathbf{x} = 0$)	The homogeneous system $A \boldsymbol{x} = \boldsymbol{0}$ has only the trivial solution $\boldsymbol{x} = \boldsymbol{0}$.
	\$
	The system $A\boldsymbol{x} = \boldsymbol{0}$ has no free variables (that is, every column of A is a pivot column)
	(<i>See Statement (3), p. 66</i>)
	The columns of A are linearly

VERSION 2: We showed earlier that all the statements within each box (see other side) are equivalent. Now we ask **what more is true if we also assume that** m = n. In that case, we have that $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear mapping with **square** standard matrix $A_{n \times n}$. Because A is square, it then turns that out all the statements on this page are equivalent. including some additional statements (not on the other side) which appear **in boldface** are equivalent. Version 2 - the statement that these are all equivalent – is called the **Invertible Matrix Theorem (IMT)** in the textbook.

<i>T</i> is <u>onto</u> : that is, for <u>every</u> $\boldsymbol{b} \in \mathbb{R}^n$ there is <u>at least one</u> $\boldsymbol{x} \in \mathbb{R}^n$ for which $T(\boldsymbol{x}) = \boldsymbol{b}$	For every $\boldsymbol{b} \in \mathbb{R}^n$, there is at least one $\boldsymbol{x} \in \mathbb{R}^n$ for which $A\boldsymbol{x} = \boldsymbol{b}$ (that is, the mapping $\boldsymbol{x} \mapsto A\boldsymbol{x}$ is onto)
For <u>every</u> $\boldsymbol{b} \in \mathbb{R}^n$, the equation $T(\boldsymbol{x}) = \boldsymbol{b}$ has <u>at least</u> one solution	Every vector $\boldsymbol{b} \in \mathbb{R}^n$ is a linear combination of the columns of A
	The columns of A span \mathbb{R}^n
	A has a pivot in every row
	$\ \ \ \leftarrow \underline{\text{because } A \text{ is } n \times n}$
A has a pivot in A^T is a	every column \Leftrightarrow A has exactly n pivots $\label{eq:alpha}$ $\label{eq:alpha}$ $\label{eq:alpha}$ $\label{eq:alpha}$ invertible \Leftrightarrow A is invertible $\label{eq:alpha}$ $\label{eq:alpha}$
The equation $T(\mathbf{x}) = 0$ has only the trivial solution (namely, $\mathbf{x} = 0$)	The homogeneous system $A \boldsymbol{x} = \boldsymbol{0}$ has only the trivial solution $\boldsymbol{x} = \boldsymbol{0}$.
For every $\boldsymbol{b} \in \mathbb{R}^n$, the equation $T(\boldsymbol{x}) = \boldsymbol{b}$ has at most one solution.	For every $\boldsymbol{b} \in \mathbb{R}^n$, the equation $\boldsymbol{A}x = \boldsymbol{b}$ has at most one solution.
T <u>one-to-one</u> , that is, for <u>every</u> $\boldsymbol{b} \in \mathbb{R}^n$ there is <u>at most one</u> $\boldsymbol{x} \in \mathbb{R}^n$ for which $T(\boldsymbol{x}) = \boldsymbol{b}.$	For every $\boldsymbol{b} \in \mathbb{R}^n$, there is at most one $\boldsymbol{x} \in \mathbb{R}^n$ for which $A\boldsymbol{x} = \boldsymbol{b}$
	The columns of A are linearly independent

\$

T is an invertible transformation: that is there is a linear $S : \mathbb{R}^n \to \mathbb{R}^n$ such that $(T \circ S)(x) = x = (S \circ T)(x)$ for every *x* in \mathbb{R}^n $\begin{array}{c} \updownarrow \\ \text{There is an } n \times n \text{ matrix } C \text{ such that} \\ CA = I_n \\ & \updownarrow \\ \text{There is an } n \times n \text{ matrix } D \text{ such that} \\ AD = I_n \end{array}$