VERSION 1, with 2 PARTS (previously done): suppose T is a linear function, where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with standard matrix A
T is onto: that is, for every $\boldsymbol{b} \in \mathbb{R}^{m} \quad$ For every $\boldsymbol{b} \in \mathbb{R}^{m}$, there is at least there is at least one $\boldsymbol{x} \in \mathbb{R}^{n}$ for which $\quad \Leftrightarrow \quad$ one $\boldsymbol{x} \in \mathbb{R}^{n}$ for which $A \boldsymbol{x}=\boldsymbol{b}$
$T(x)=b$

II

For every $\boldsymbol{b} \in \mathbb{R}^{m}$, the equation $T(\boldsymbol{x})=\boldsymbol{b}$ has at least one solution (that is, the mapping $x \mapsto A x$ is onto

$$
\Uparrow \quad \text { (see Theorem 4, p. 43) }
$$

Every vector $\boldsymbol{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A
(1) (See Theorem 4, p. 43)

The columns of A span \mathbb{R}^{m}
(1) (see Theorem 4, p. 43)
A has a pivot in every row.
T is one-to-one: that is, for every $\boldsymbol{b} \in \mathbb{R}^{m} \quad \Leftrightarrow \quad$ For every $\boldsymbol{b} \in \mathbb{R}^{m}$, there is at there is at most one $\boldsymbol{x} \in \mathbb{R}^{n}$ for which $T(\boldsymbol{x})=\boldsymbol{b}$.

π

For every $\boldsymbol{b} \in \mathbb{R}^{m}$, the equation $T(\boldsymbol{x})=\boldsymbol{b}$ has at most one solution.
(1) (See Theorem 11, p. 88)
most one $\boldsymbol{x} \in \mathbb{R}^{n}$ for which $A x=b$.

I

For every $\boldsymbol{b} \in \mathbb{R}^{m}$, the equation $\boldsymbol{A x}=\boldsymbol{b}$ has at most one solution.

I
\Leftrightarrow The homogeneous system $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution $\boldsymbol{x}=\mathbf{0}$.

π

The system $A \boldsymbol{x}=\mathbf{0}$ has no free variables (that is, every column of A is a pivot column)

I (See Statement (3), p. 66)
The columns of A are linearly independent

VERSION 2: We showed earlier that all the statements within each box (see other side) are equivalent. Now we ask what more is true if we also assume that $m=n$. In that case, we have that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear mapping with square standard matrix $A_{n \times n}$. Because A is square, it then turns that out all the statements on this page are equivalent. including some additional statements (not on the other side) which appear in boldface are equivalent. Version 2 - the statement that these are all equivalent - is called the Invertible Matrix Theorem (IMT) in the textbook.
T is onto: that is, for every $\boldsymbol{b} \in \mathbb{R}^{n}$ there is at least one $\boldsymbol{x} \in \mathbb{R}^{n}$ for which $T(x)=b$

For every $\boldsymbol{b} \in \mathbb{R}^{n}$, the equation $T(\boldsymbol{x})=\boldsymbol{b}$ has at least one solution

For every $\boldsymbol{b} \in \mathbb{R}^{n}$, there is at least one $\boldsymbol{x} \in \mathbb{R}^{n}$ for which $A \boldsymbol{x}=\boldsymbol{b}$ (that is, the mapping $x \mapsto A x$ is onto)

Every vector $\boldsymbol{b} \in \mathbb{R}^{n}$ is a linear combination of the columns of A

The columns of A span \mathbb{R}^{n}
A has a pivot in every row
$\hat{4} \leftarrow \underline{\text { because } A} \underline{\text { is }} n \times n$
A has a pivot in every column $\quad \Leftrightarrow A$ has exactly n pivots
药
$\operatorname{rref} A=I_{n}$
I
A^{T} is invertible $\quad \Leftrightarrow \quad A$ is invertible I
The equation $T(\boldsymbol{x})=\mathbf{0}$ has only the trivial The homogeneous system $A \boldsymbol{x}=\mathbf{0}$ solution (namely, $\boldsymbol{x}=\mathbf{0}$)

For every $\boldsymbol{b} \in \mathbb{R}^{n}$, the equation $T(\boldsymbol{x})=\boldsymbol{b}$ has at most one solution.
T one-to-one, that is, for every $\boldsymbol{b} \in \mathbb{R}^{n}$ there is at most one $\boldsymbol{x} \in \mathbb{R}^{n}$ for which $T(\boldsymbol{x})=\boldsymbol{b}$.

I

T is an invertible transformation: that is there is a linear $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $(T \circ S)(x)=x=(S \circ T)(x)$ for every x in \mathbb{R}^{n}

介
There is an $n \times n$ matrix C such that $C A=I_{n}$

॥
There is an $n \times n$ matrix D such that $A D=I_{n}$

