Comments on two of the WW9 problems.
3. There's no issue with this problem, but it does take a little more cleverness than most.

The characteristic polynomial is degree 3 (a "cubic" polynomial); k appears as the constant term in the polynomial.

Call the chracteristic polynomial $P(\lambda)$.
Try graphing $y=P(\lambda)$ after setting $k=0$. You should see a local maximum and local minimum. You will probably want to locate where these occur and calculate the y value at the local maximum and minimum. (This uses calculus, but very little - at the level of Calc I.)

Now, if you change k, the effect is just to translate the graph vertically up or down. Your job is to pick the values for k that will make the equation $P(\lambda)=0$ have 3 roots - that is, you want the graph of $y=P(\lambda)$ to cross the horizontal axis 3 times. It should be clear that this won't happen if k is too big or too small. What k 's will make it happen?
16. The problem is not worded well.
V is a plane through $\mathbf{0}$ in \mathbb{R}^{3}. It is a 2 dimensional subspace and you are given a basis for V : $\left\{\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}\right\}$

You're also given a 3×3 matrix A. A is used to define a mapping from the plane V to \mathbb{R}^{3}.

For \boldsymbol{x} in the plane $V: T(\boldsymbol{x})=A \boldsymbol{x}$ a vector in \mathbb{R}^{3}
We're thinking of the domain of T not as all of \mathbb{R}^{3}
but only those \boldsymbol{x} in the given subspace (plane) V.
It turns out that the image of $V=T(V)$ is a 2-dimensional subspace W of \mathbb{R}^{3} (another plane through $\mathbf{0}$), and $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ turn out to be in W. This is because of how WW designed the matrix A.

You could verify all this for your particular A and $\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}$ but it's probably not obvious from just loking at the matrix and vectors., \boldsymbol{b}

Therefore $T: V \rightarrow W$, and $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\}$ is a basis for both V and W.
The matrix for T with respect to \mathcal{B} is a 2×2 matrix and this is the matrix WW wants.

