Comments on two of the WW9 problems.

3. There's no issue with this problem, but it does take a little more cleverness than most.

The characteristic polynomial is degree 3 (a "cubic" polynomial); k appears as the constant term in the polynomial.

Call the chracteristic polynomial $P(\lambda)$.

Try graphing $y = P(\lambda)$ after setting k = 0. You should see a local maximum and local minimum. You will probably want to locate <u>where</u> these occur and calculate the <u>y value</u> at the local maximum and minimum. (*This uses calculus, but very little – at the level of Calc I.*)

Now, if you change k, the effect is just to translate the graph vertically up or down. Your job is to pick the values for k that will make the equation $P(\lambda) = 0$ have 3 roots – that is, you want the graph of $y = P(\lambda)$ to cross the horizontal axis 3 times. It should be clear that this won't happen if k is too big or too small. What k's will make it happen?

16. The problem is not worded well.

V is a plane through **0** in \mathbb{R}^3 . It is a 2 dimensional subspace and you are given a basis for $V : \{b_1, b_2\}$

You're also given a 3×3 matrix A. A is used to define a mapping from the plane V to \mathbb{R}^3 .

For \boldsymbol{x} in the plane V: $T(\boldsymbol{x}) = A\boldsymbol{x}$ a vector in \mathbb{R}^3 We're thinking of the <u>domain</u> of T <u>not</u> as all of \mathbb{R}^3 but only those \boldsymbol{x} in the given subspace (plane) V.

It turns out that the <u>image of V = T(V) is a 2-dimensional</u> subspace W of \mathbb{R}^3 (another plane through **0**), and b_1, b_2 turn out to be in W. This is because of how WW designed the matrix A.

You could verify all this for your particular A and b_1 , b_2 but it's probably not obvious from just loking at the matrix and vectors., b

Therefore $T: V \to W$, and $\mathcal{B} = \{\boldsymbol{b_1}, \boldsymbol{b_2}\}$ is a basis for both V and W.

The matrix for T with respect to \mathcal{B} is a 2 \times 2 matrix and this is the matrix WW wants.