See the introductory example for Chapter 1 (pp. 1-2) and Example 1 in Section 1.6 (pp. 49-51)

Suppose an "economy" has only 4 sectors: agriculture (A), Energy (E), manufacturing (M) and transportation (T). In this simple example, all goods produced are bought and sold among these four sectors - so this model is called a "closed exchange economy."

Each column in following exchange matrix shows how $\$ 1$ of goods produced by one sector is consumed by the 4 sectors.

Going down the third column, for example, we can see how much of each $\$ 1$ of goods produced by the manufacturing sector is consumed by the 4 sectors:
0.30 (or 30%) goes to the agriculture sector,
0.15 (or 15%) goes to the energy sector,
0.15 (or 15%) goes to the manufacturing sector
(it uses up some of its own goods), and
0.40 (or 40%) goes to the transportation sector.

Of course, the sum of each column is $\$ 1$ (100\%).
Going across the second row, for example, we can see how much the energy sector consumes from the others: for example, the energy sector consumes 0.10 (or 10%) out of each $\$ 1$ of goods produced by the agriculture, energy and transportation sectors and 0.15 (or 15%) of each $\$ 1$ of goods produced by the manufacturing sector.

Suppose $p_{A}, p_{E}, p_{M}, p_{T}$ represent the total production of each sector, measured in $\$$.
Question: is it possible to find values for $p_{A}, p_{E}, p_{M}, p_{T}$ so that "everybody's happy" - that is, every sector uses its production to pay for what it needs from the other sectors with nothing left over. If so, then the values $p_{A}, p_{E}, p_{M}, p_{T}$ are called equilibrium prices for the closed exchange economy.

The "cost" to sector A for what it needs is

$$
.65 P_{A}+.30 P_{E}+.30 P_{M}+.20 P_{T}
$$

and this cost must be "paid for" with P_{A} (the value of sector A 's goods). So $\quad .65 P_{A}+.30 P_{E}+.30 P_{M}+.20 P_{T}=P_{A}$

Similarly, we need

$$
\begin{gathered}
.10 P_{A}+.10 P_{E}+.15 P_{M}+.10 P_{T}=P_{E} \\
.25 P_{A}+.35 P_{E}+.15 P_{M}+.30 P_{T}=P_{M} \\
.25 P_{E}+.40 P_{M}+.40 P_{T}=P_{T}
\end{gathered}
$$

Rearranging these equations gives the linear system

$$
\begin{array}{r}
-.35 P_{A}+.30 P_{E}+.30 P_{M}+.20 P_{T}=0 \\
.10 P_{A}-.90 P_{E}+.15 P_{M}+.10 P_{T}=0 \\
.25 P_{A}+.35 P_{E}-.85 P_{M}+.30 P_{T}=0 \\
.25 P_{E}+.40 P_{M}-.60 P_{T}=0
\end{array}
$$

The augmented matrix is
$\left[\begin{array}{rrrrr}-.35 & .30 & .30 & .20 & 0 \\ .10 & -.90 & .15 & .10 & 0 \\ .25 & .35 & -.85 & .30 & 0 \\ 0 & .25 & .40 & -.60 & 0\end{array}\right]$ and its row reduced echelon
form (entries rounded to 2 decimal places for convenience) is

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -2.03 & 0 \\
0 & 1 & 0 & -0.53 & 0 \\
0 & 0 & 1 & -1.17 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Writing \approx instead of $=$ (since we rounded decimals), we have

$$
\begin{aligned}
& P_{A} \approx 2.03 P_{T} \\
& P_{E} \approx 0.53 P_{T} \\
& P_{M} \approx 1.17 P_{T} \\
& P_{T} \text { free }
\end{aligned}
$$

Therefore: So if a total production $P_{T}(\$)$ for the transportation sector is chosen, then (mathematically) the productions of the other sectors can be set to values that create an equilibrium. Of course, one would want to assign a reasonable and realistic value.

