
See the introductory example for Chapter 1 (pp. 1-2) and Example 1 in Section 1.6
(pp. 49-51)

Suppose an “economy” has only 4 sectors: agriculture (A), Energy (E), manufacturing
(M) and transportation (T).   In this simple example, all goods produced are bought and
sold among these four sectors so this model is called a  “ .” closed exchange economy

Each column in following  shows how $1 of goods  by oneexchange matrix produced
sector is consumed by the 4 sectors.
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Going down the third column, for example, we can see how much of each $  of"
goods produced by the manufacturing sector is consumed by the 4 sectors:

  (or 30%)  goes to the agriculture sector,!Þ$!
  (or 15%) goes to the energy sector,!Þ"&
  (or 15%) goes to the manufacturing sector!Þ"&
   (it uses up some of its own goods), and
 (or 40%) goes to the transportation sector.!Þ%!

Of course, the sum of each column is $  (100%)."

Going across the second row, for example, we can see how much the energy
sector  from the others:  for example, the energy sector consumes consumes !Þ"!
Ð "!or %) out of each $1 of goods produced by the agriculture, energy and
transportation sectors and (or 15%) of each $1 of goods produced by the!Þ"&
manufacturing sector.

Suppose  represent the  of each sector, measured in $.: ß : ß : ß :E I Q X total production

Question:  is it possible to find values for  so that “everybody's: ß : ß : ß :E I Q X

happy” that is, every sector uses its production to pay for what it needs from the other
sectors with nothing left over.  If so, then the values  are called : ß : ß : ß :E I Q X equilibrium
prices for the closed exchange economy.



The “cost” to sector  for what it needs isE
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and this cost must be “paid for” with the value of sector 's goodsT Ð E ÑÞE
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Similarly, we need
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Rearranging these equations gives the linear system
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The augmented matrix is
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and its row reduced echelon

form (entries  to 2 decimal places for convenience) isrounded
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Writing  instead of  (since we rounded decimals), we have¸ œ
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Therefore: So if a total production ($) for the transportation sector isTX

chosen, then (mathematically) the productions of the other sectors can be
set to values that create an equilibrium.  Of course, one would want to
assign a reasonable and realistic value.


