See the introductory example for Chapter 1 (pp. 1-2) and Example 1 in Section 1.6 (pp. 49-51)

Suppose an "economy" has only 4 sectors: agriculture (A), Energy (E), manufacturing (M) and transportation (T). In this simple example, all goods produced are bought and sold among these four sectors — so this model is called a "closed exchange economy."

Each column in following <u>exchange matrix</u> shows how \$1 of goods <u>produced</u> by one sector is consumed by the 4 sectors.

Production of sector						
\downarrow	\downarrow	\downarrow	\downarrow			
A	E	M	T			
.65	.30	.30	.20		(A	
.10	.10	.15	.10	\rightarrow consumed by	$\int E$	
.25	.35	.15	.30		M	
0	.25	.40	.40		T	

<u>Going down the third column</u>, for example, we can see how much of each \$1 of goods produced by the manufacturing sector is consumed by the 4 sectors:

0.30 (or 30%)	goes to the agriculture sector,
0.15 (or 15%)	goes to the energy sector,
0.15 (or 15%)	goes to the manufacturing sector
	(it uses up some of its own goods), and
0.40 (or 40%)	goes to the transportation sector.

Of course, the sum of each column is \$1 (100%).

<u>Going across the second row</u>, for example, we can see how much the energy sector <u>consumes</u> from the others: for example, the energy sector consumes 0.10 (or 10%) out of each \$1 of goods produced by the agriculture, energy and transportation sectors and 0.15 (or 15%) of each \$1 of goods produced by the manufacturing sector.

Suppose p_A , p_E , p_M , p_T represent the <u>total production</u> of each sector, measured in \$.

<u>Question</u>: is it possible to find values for p_A , p_E , p_M , p_T so that "everybody's happy" – that is, every sector uses its production to pay for what it needs from the other sectors with nothing left over. If so, then the values p_A , p_E , p_M , p_T are called <u>equilibrium</u> prices for the closed exchange economy.

The "cost" to sector A for what it needs is

$$.65P_A + .30P_E + .30P_M + .20P_T$$

and this cost must be "paid for" with P_A (the value of sector A's goods). So $.65P_A + .30P_E + .30P_M + .20P_T = P_A$

Similarly, we need

$$.10P_A + .10P_E + .15P_M + .10P_T = P_E$$

$$.25P_A + .35P_E + .15P_M + .30P_T = P_M$$

$$.25P_E + .40P_M + .40P_T = P_T$$

Rearranging these equations gives the linear system

 $\begin{aligned} &-.35P_A + .30P_E + .30P_M + .20P_T = 0\\ &.10P_A - .90P_E + .15P_M + .10P_T = 0\\ &.25P_A + .35P_E - .85P_M + .30P_T = 0\\ &.25P_E + .40P_M - .60P_T = 0\end{aligned}$

The augmented matrix is

Γ	35	.30	.30	.20	0	
	.10	90	.15	.10	0	and its new meduced exhalen
	.25	.35	85	.30	0	and its row reduced echelon
L	0	.25	.40	60	0	

form (entries rounded to 2 decimal places for convenience) is

1	0	0	-2.03	0
0	1	0	-0.53	0
0	0	1	-1.17	0
0	0	0	0	0

Writing \approx instead of = (since we rounded decimals), we have

$$P_A \approx 2.03 P_T$$

 $P_E \approx 0.53 P_T$
 $P_M \approx 1.17 P_T$
 P_T free

<u>Therefore</u>: So if a total production P_T (\$) for the transportation sector is chosen, then (mathematically) the productions of the other sectors can be set to values that create an equilibrium. Of course, one would want to assign a reasonable and realistic value.