Diagonalization Example

Can we diagonalize: $A=\left[\begin{array}{rr}2 & 3 \\ 3 & -6\end{array}\right]$? That is, can we factor
$A=P_{\mathcal{B}} D P_{\mathcal{B}}^{-1}$ for some basis \mathcal{B} and some diagonal matrix D ?
The answer is "yes" if we can find a basis consisting of eigenvectors of A. (See the notes: Introduction to Diagonalization from the preceding lecture.)

We need see, first if we can find any eigenvectors at all. An eigenvector is a nonzero solution to $A \boldsymbol{x}=\lambda \boldsymbol{x}$ (where λ can be any scalar). So, if this is possible, there are really two "unknown" items at this point: the λ, and the corresponding \boldsymbol{x} 's.

We can rewrite $A \boldsymbol{x}=\lambda \boldsymbol{x}$ as $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ where I is the identity matrix. This homogeneous equation has a nonzero (=nontrivial) solution for \boldsymbol{x} if and only if $\operatorname{det}(A-\lambda I)=0$. We use this fact first to find the possible λ 's (eigenvalues); then, for each possible λ, separately, we find the corresponding \boldsymbol{x} 's (eigenvectors)

For the given matrix A :
(*) $\quad(A-\lambda I) \boldsymbol{x}=\mathbf{0}$

$$
\begin{gathered}
{\left[\begin{array}{rr}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right] \boldsymbol{x}=\mathbf{0}} \\
\operatorname{det}\left[\begin{array}{rr}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]=-(2-\lambda)(6+\lambda)-9 \\
=\lambda^{2}+4 \lambda-21=(\lambda+7)(\lambda-3)=0 \text { so } \lambda=-7 \text { or } 7 .
\end{gathered}
$$

${ }^{(*)}$ will have nonzero solutions for \boldsymbol{x} if and only if $\lambda=-7$ or $\lambda=3$.
$\underline{\text { For } \lambda}=-\underline{7}$:

$$
\begin{aligned}
& (A+7 I) \boldsymbol{x}=\mathbf{0} \\
& {\left[\begin{array}{ll}
9 & 3 \\
3 & 1
\end{array}\right] \sim \ldots \sim\left[\begin{array}{ll}
1 & \frac{1}{3} \\
0 & 0
\end{array}\right] \text { so } \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]}
\end{aligned}
$$

By rescaling, we can rewrite the general solution (for neatness) as $\boldsymbol{x}=s\left[\begin{array}{c}-1 \\ 3\end{array}\right]$
So, then eigenvectors corresponding to $\lambda=-7$ are the nonzero multiples of $\left[\begin{array}{c}-1 \\ 3\end{array}\right]$.
$\underline{\text { For }} \lambda=\underline{3}$:

$$
\begin{aligned}
& (A-3 I) \boldsymbol{x}=\mathbf{0} \\
& {\left[\begin{array}{rr}
-1 & 3 \\
3 & -9
\end{array}\right] \sim\left[\begin{array}{rr}
1 & -3 \\
0 & 0
\end{array}\right] \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{l}
3 \\
1
\end{array}\right]}
\end{aligned}
$$

So, then eigenvectors corresponding to $\lambda=3$ are the nonzero multiples of $\left[\begin{array}{l}3 \\ 1\end{array}\right]$. If we pick one eigenvector for each eigenvalue, we can get a basis (consisting of eigenvectors) for $\mathbb{R}^{2} . \mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$

According to the notes, we can diagonalize A as

$$
\begin{gathered}
A=\left[\begin{array}{rr}
2 & 3 \\
3 & -6
\end{array}\right]=\left[\begin{array}{rr}
1 & 3 \\
-3 & 1
\end{array}\right]\left[\begin{array}{rr}
-7 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{10} & -\frac{3}{10} \\
\frac{3}{10} & \frac{1}{10}
\end{array}\right] \\
P_{\mathcal{B}} \quad D
\end{gathered}
$$

where the diagonal matrix D is created using the eigenvalues for the eigenvectors in the columns of $P_{\mathcal{B}}$ (in the same order).

An additional observation about what diagonalization can be useful in computations:
If

$$
\begin{aligned}
& A=P D P^{-1} \text {, then } \\
& A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D^{2} P^{-1} \\
& A^{3}=A^{2} A=\left(P D^{2} P^{-1}\right)\left(P D P^{-1}\right)=P D^{3} P^{-1} \\
& \vdots \\
& A^{n}=A^{n-1} A=\left(P D^{n-1} P^{-1}\right)\left(P D P^{-1}\right)=P D^{n} P^{-1}
\end{aligned}
$$

This makes computing powers of A much easier: very handy if n is large, and even more so if A is a very large sized matrix. A "small" example, from above:

$$
A^{20}=\left[\begin{array}{rr}
1 & 3 \\
-3 & 1
\end{array}\right]\left[\begin{array}{rr}
-7 & 0 \\
0 & 3
\end{array}\right]^{20}\left[\begin{array}{rr}
\frac{1}{10} & -\frac{3}{10} \\
\frac{3}{10} & \frac{1}{10}
\end{array}\right]==\left[\begin{array}{rr}
1 & 3 \\
-3 & 1
\end{array}\right]\left[\begin{array}{rr}
7^{20} & 0 \\
0 & 3^{20}
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{10} & -\frac{3}{10} \\
\frac{3}{10} & \frac{1}{10}
\end{array}\right]
$$

1.0e+016 *
0.79792297678672 -2.39376788432483
-2.39376788432483 7.18130400165292
\leftarrow Matlab's notation: each entry in the displayed matrix is by 10^{16} (of course, there's roundoff in Matlab's answer)

