
Introduction to Diagonalization

Suppose  is a linear transformation, and that  where  is an X À Ä XÐ Ñ œ H H 8 ‚ 8‘ ‘8 8 B B
diagonal matrix.  Such transformations are particularly easy to understand, and can be very useful
in applications.

The effect of multiplication by  is just a rescaling in the directions of the basis coordinateH
vectors , :/ / /" # 8ß ÞÞÞß
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just rescales each basis vector:  maps to a multiple of itself, and the rescaling factor  the/3 œ
entry from the diagonal of -3 HÞ
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In other words the effect of XÐ Ñ œ HB B Bis just to rescale each coordinate of  by theB3

corresponding factor .-3

 



Example:  Suppose  is given by X À Ä XÐ Ñ œ‘ ‘# # B H œ
$ !
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H  Ð simply rescales each coordinate of by a factor of 3 in the direction of the horizontalB /" 
direction   by a factor of 6 in the direction of the vertical direction .  In this particularÑ Ð Ñand /# 
example, the diagonal entries of  are , so multiplying by  “stretches” theH Hboth bigger than " B
coordinates of in each of the coordinate directions, and .B / /" #

You can see this in the figure below where       " " $
" " '

È H œ À

 

        

Example SupposeÐthe example is for , but the same idea applies just as well for   ‘ ‘# 8ÑÞ

X Ð Ñ œ H œB B  " !

! "
#

BÞ  Consider the difference equation

     B B5" 5œ H

It's easy to see the long-term behavior of this system since multiplication by  just rescalesH

coordinates:  if we start with   B œ!  +
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Since  as we can immediately see the long term behavior of the system:Ð Ñ Ä ! 5 Ä ∞ß"
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In the same way, for any diagonal matrix and  we getH œ ß
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ß   is determined by the size of

- - -" # 3, :  for example, if both . then The long term behavior of such a systeml l  " B !5 Ä Þ   

can be very important in applications, and it depends on the diagonal entries of .H

________________________________________________________________________

Suppose where .  If  is not diagonal, then X À Ä ß X Ð Ñ œ E E‘ ‘8 8 B B sometimes it's possible to
find a   so that a change to working in  coordinates “diagonalizes” .  Roughly, thisnew basis U U E
means that

  (*) 
(in standard coordinates)

  (expressed instead in  coordinates)



B B

B B

             È E

Ò Ó È HÒ Ó

is the same as

U U U

  
To make this more precise:

For a basis , recall that is the matrix whose columns are the new basis vectors in .  ThenU UTU 

standard coordinates and coordinates are related by the equationsU

  and  T Ò Ó œ Ò Ó œ TU U U UB B B B  "

Sometimes we can find a basis  and a diagonal matrix U H so that if we:

  1)  first convert to  coordinates          B BU TU
"

    2) then multiply by  (    H HTrescale  coordinatesU ) U
"B

  3)  then convert back to standard coordinates         T HTU U
"B

 
we get the same result as  In other words,  E Þ E œ T HTB B BU U

"

In that case, the effect of the mapping  is a  of  withB B BÈ E rescaling of the  coordinatesU
rescaling factors  the entries on the diagonal of .œ H

This leads to the official definition:



 Suppose  is an  matrix.  is called  if there is an invertible E 8 ‚ 8 E 8 ‚ 8diagonalizable
 matrix   and a diagonal matrix such thatT H
   
    E œ THT"

 (When this happens, the columns of  can be used as a new basis  for T U ‘8

 and then the “change of coordinates matrix” so that things look just asT œ T œU

 they did in the preceding paragraphs.)
  
It is  always possible to diagonalize an  matrix .  We will see more about this innot 8 ‚ 8 E
Chapter 5.  But the examples below will lead us to one statement about when it is possible.   

Example  Suppose , where  It's a fact (XÐ Ñ œ E E œ Þ
% #
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B B   just check by multiplying, if you

like) that

  E œ œ
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                           Å Å Å
                        œ T H T"

  (for now, don't worry about where the matrix  came from.T
  Such questions come up in Chapter 5)

T  is invertible, so its columns are linearly independent and span  and we can use the columns‘#

as a new basis for :   Then  is the matrix that the‘ U# œ Ö ß × œ Ö ß × Þ T
# "

 " "
, ," #    

textbook calls “the change of coordinates matrix from  coordinates to standardT œU U
coordinates” À

     T Ò Ó œU UB B

This new basis lets us see more clearly how  operates.  Suppose     ThenE œ Þ
#
"

B  
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" & (      

But we can also calculate  in a more roundabout way but one which gives new insight:E B
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In the second calculation, look at what happens to , step-by-step, as each matrix, in turn, doesB
its work:
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Then

   multiplication by                                                      Å Å Å
   converts                     the     stretchedT Ò ÓF

" B U diagonal matrix
   standard coordinates stretches the new      -coordinatesH U
   into -coordinates -coordinatesU U
      by factors of 3 and 6
      (in the coordinate directions    
      corresponding to and ), ," #  

 ,  Finally     # " " "!
 " " ) (

œ

                                           Å
        multiplication by TF

         converts the stretchedÐ Ñ
         -coordinates back intoU
         standard coordinates

Use the figure on the following page to check each of the preceding steps graphically  asß
accurately as you can.
  

  1)   has -coordinates B Bœ Ò Ó œ
#
"   U U

"
$
%
$

  2) Stretching  by factors of   and  in the  and  directionsÒ Ó $ 'B , ,U " #

  gives the point with “stretched” -coordinates .U  "
)

  3) Converting these -coordinates  back to standard coordinatesU  "
)

  gives    "! #
( "

œ E Þ



 

So the effect of  on a point in standard coordinates) is the same as the effect of the diagonalE ÐB
matrix  on the same point (when described in -coordinates) a H ÀB U rescaling of the U
coordinates by a factor of  (in the direction of the “positive -axis”) and by a factor of (in$ '    ,"
the direction of the “positive -axis),# Þ”

Notice that    has  coordinates , œ ," # #
 "

U    " !
! "

 and  has  coordinates  U

 
so (by the  in the preceding paragraphunderlined remark )

 E E   # #
 "  "

œ Ð Ñ, ," "œ $ œ $the point with  coords. U  $
!

œ std coords.

 and 

 E œ Ð Ñ
" "
" "   E, ,# #œ œ 'the point with  coords. U  !

'
œ ' in std coords

 

 Again, it might be helpful to look at what's going on in more detail, using the same 3-step
 process.  See the figure on the next page.



 For example, for  ( )," follow each step using the preceding figure À

 E œ œ
% # # # " $ ! #
" &  "  " " ! '  "


,"         " "

$ $
" #
$ $

    œ œ œ œ $ œ $
# " $ ! " # " $ ' #

 " " ! ' !  " " !  $  "           ,"

           ___       ___   |_____l l l l l
           U-coordinates stretched         back into standard
    of -coordinates       coordinates again," œ    U
      “unit vector” in the direction,"

Thus    .  Such (nonzero)the matrix  maps each vector and to a scalar multiple of itselfE , ," #  
vectors are called  of ;  the scalar  is called the  associated with theeigenvectors eigenvalueE $
eigenvector ,  and  is called the eigenvalue associated with the eigenvector ., ," #'

The reason we were able to do such a nice analysis of how this matrix  works is that we wereE
able to write down a new basis  for  of .U ‘#  Ea basis whose members are eigenvectors
(Remember, in the beginning, I simply  you the matrix  whose columns  turned out togave T , ," #

be eigenvectors; we haven't discussed yet how you might start, from “”, to find such a )

Here is the general definition.

Definition   A  vector  is called an  of the  matrix nonzero eigenvectorB 8 ‚ 8 E
if for some scalar .  The scalar  is called an  of associated with theE œ E ÐB B- - - eigenvalue
eigenvector    Eigenvalues and eigenvectors of  are also called eigenvectors or eigenvaluesBÑÞ E
of the transformation if X XÐ Ñ œ E ßB B

 It's traditional, in almost all books, to use the Greek letter  (“lambda”) to denote an-
eigenvalue.
    and  are words with German roots.  Some books callEigenvalue eigenvector
“eigenvectors” and “eigenvalues” by the loose translations “characteristic vectors” and
“characteristic values.”)

In the preceding  example there is nothing special about the specific eigenvalues  and .# ‚ # $ '
They might be any other numbers  and  (where perhaps even  To recap, in general:- - - -" # " #œ ÑÞ

 If  can be factored as   ,  where  has columns , E E œ T T T ß
!

! -
-

"

#

" , ," #

 then  and are  of  with   and  :, ," # eigenvectors eigenvalues becauseE - -" #

  We can choose  as a new  ( ) for , and then calculateU ‘œ Ö ×, ß ," # basis why? #

   E T T œ T
! ! "

! ! !
, œ ," "U UU    - -

- -
" "

# #

"

                 ___l l
         -coordinates of U ,"



                        œ T œ Ò Ó œ  ! œ
! !U   - -

- -" "
" ", , , , ," # " # "

  ___l l
   -coordinatesU
      
 Similarly, .E œ, ,# #-#

In this case, the  interpretation of how  operates on a point  is justgeometric E B
as it was earlier: there is a rescaling of  coordinates, with rescaling factors   and .U - -œ " #

Of course,  if (say)  then multiplication by  is a “contraction” of the first!   " H-"

U - coordinate of  (rather than a“stretch”);  and if (say) , multiplication by  reverses theB #  ! H
sign of the second  coordinate of (as well as either stretching or contracting).U B 

The preceding discussion proves the following theorem (where  the discussion is8 œ #Ñ, and
exactly the same for  matrices (except that there are more matrix entries and vectors to write8 ‚ 8
down, making the discuss  as if it were more complicated it isn't !)  So we have indicatedlook 
the proof of the following theorem:

Theorem 1   Let  be  an  matrixE 8 ‚ 8

Suppose  is diagonalizableE ,  that is, suppose  can be factored asE

     ,E œ T T

! ! ! !
! ! â !
! â â !
! ã ã ã !
! ! ! !
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Then has a basis that consists of eigenvectors of   ‘8 EÞ

This basis is , where the 's are the columns of These 's areU œ Ö ß ß ÞÞÞ × T Þ, , , , ," # 8 3 3  
eigenvectors of , and their eigenvalues are the scalars of the diagonal of E H
(   ).in  order: for etc.same -" ,"ß

It turns out that the  of  Theorem 1 is also true:   if we start with a basis for thatconverse ‘8

consists of eigenvectors of ,   must be diagonalizable that is, can be factored asE E  Ethen
E œ THT Þ"

The next example illustrates why this works.

Example   Suppose   Consider that basis  and .E œ Þ œ Ö ×
( # " "

 % "  "  #     U

The vectors and are eigenvectors for  as we can easily check:, ," # E

 E œ œ œ &
" ( # " & "

 "  % "  "  &  "        



 

   so  is an eigenvector with  .   Similarly, "
 "

&eigenvalue

 E œ œ œ $
" ( # " $ "

 #  % "  #  '  #        
  

   so  is an  eigenvector with  . "
 #

$eigenvalue

So  is a basis for  consisting of eigenvectors of .U ‘œ Ö ß × E, ," #
#

  a matrix .   Because the columns of  are linearlyCreate T œ Ò Ó œ T
" "

 "  #
, ," #  

independent,   is invertible.T

  , where the diagonal entries are the eigenvalues of  (Create H œ ß
& !
! $  , ," # written

down in the same order:  not  $ !
! &

!! )

Then  To see that this factorization works, the easiest thing to doE œ THT Þ"

(  is to multiply both sides of the proposed equality on the right by rather than compute T Ñ" T
and check whether the equivalent equation  is true:ET œ TH
  

     andET œ œ
( # " " & $

 % "  "  #  &  '    
    TH œ œ

" " & ! & $
 "  # ! $  &  '    

so the factorization is correct.

The general statement of the converse for Theorem 1 is

Theorem 2   Let  be an  matrix.E 8 ‚ 8

Suppose has a basis that consists of eigenvectors of    ‘8 Ö ß ß ÞÞÞß × Þ, , ," # 8 E

Then  is diagonalizableE , that is  for some diagonal matrix E œ THT HÞ"

The matrix  has the eigenvectors as its columns, and the diagonal matrixT ß ß ÞÞÞß, , ," # 8 
H ß ÞÞÞß has on its diagonal the corresponding eigenvalues ,  (- - -" # 8 written in the same
order:  for , etc.)-" ,"

Why is Theorem 2 true?  The argument is given here for the case , but it works in exactly8 œ #
the same way for Not surprisingly, the argument in general looks almost exactly like the‘8Þ
preceding example.



 Suppose  is and we know that  is a basis  consisting ofE # ‚ # œ Ö ß ×U ‘, ," #
#

 eigenvectors of .  Let their corresponding eigenvalues be  and .E - -" #

 Create matrix  and   Since and are linearlyT œ Ò Ó H œ Þ
!

!
, , , ," # " # -

-
"

#
  

 independent,  is invertible   To complete the proof that  is diagonalizable, we thatT Þ E
 these matrices work: that .E œ THT"

 As in the preceding example, we just need to verify that , and, to do this, weET œ TH
 simply need to remember the definition of matrix multiplication.

   TH œ T œ ÒT T Ó
! !

! !     - -
- -

" "

# #

    ,  andœ Ò Ò Ó Ò Ó Ó œ Ò Ó
!

!
, , † , , † , ," # " # " #   -

-
- -"

#
" #

   
   ET œ EÒ Ó œ ÒE E Ó œ Ò Ó, , , , , ," # " # " #- -" #

            Å
       is an eigenvector of  with eigenvalue ,because ," E -"

     and   is an eigenvector of  with eigenvalue ,# E Þ-#

 Therefore  and  have the same columns, so ET TH ET œ TH
_______________________________________________________________________

Question  Based on this discussion, can you give an example of a transformation X À Ä‘ ‘# #

where and  is  diagonalizable?XÐ Ñ œ E EB B not



The Big Picture, so far

In Chapter 4, we have been discussing vector spaces (where  might not be ).  AfterZ Z ‘8

discussing linear independence and spanning in this more general setting, we were led to the idea
of a basis  for .  From that, the Unique Representation Theorem (p. 246) led toU œ Ö ß ÞÞÞß × Z, ," 8

the idea of using  to create  for each  in . The   is a vectorU coordinates coordinate vectorB BZ Ò ÓU
in .‘8

We saw that the mapping  is an  (a one-to-one, onto linear mapping) fromB BÈ Ò ÓU isomorphism
the vector space  to This association preserves all vector space operations and all linearZ Þ‘8

dependency relations.  For example, a linearly independent set of  in  has a linearlyvectors Z
independent set of  in , and vice-versa.coordinate vectors ‘8

In the special case when , we can might choose a basis  Z œ œ Ö ß ÞÞÞß ×‘ U8 , ," 8 different from
the standard basis.  Then a vector  in  gets new “nonstandard” coordinates relative to theB B‘8 Ò ÓU
basis .  The matrix  is the “operator” that changes  coordinates into standardU UT œ Ò ÞÞÞ ÓU , ," 8

coordinates according to the formula  .T Ò Ó œU UB B

Since the columns of  are linearly independent, the change of coordinates matrix  is alwaysT TU U

invertible and  is the “operator” that converts standard coordinates intoTU
"

U-coordinates:   Ò Ó œ TB BU U
" .

If a  matrix  can be factored into the form , where  is a diagonal matrix, then # ‚ # E THT H E"

is called because in that case  “acts like a diagonal matrix” when computationsdiagonalizable  E
are done relative to the basis  that consists of the columns.  This led into the idea ofU
eigenvectors and eigenvalues of the matrix .E

We proved that a  matrix  is diagonalizable   has a basis consisting of# ‚ # E if and only if ‘#

eigenvectors of and indicated that a completely similar proof works for an  matrix E 8 ‚ 8 E
operating on ‘8Þ

The conceptual idea of diagonalization and its relation to a basis of eigenvectors is nicely
motivated geometrically and not very hard.  You may have noticed,  however, that in the
preceding examples:

 a factorization of a given matrix  into  was ,  orE THT" given

 the eigenvalues and eigenvectors of  were  so that and  could be created.E T Hgiven

But if you are simply given an   matrix , then trying to  its eigenvectors and8 ‚ 8 E find
eigenvalues ( ), and determining whether  does or does not have aif it has any at all! ‘8  basis
consisting of eigenvectors of  are harder questions.  Be aware of those questions, but try to keepE
worries about them suppressed until we get into Chapter 5.  For now just focus on the concept of
diagonalization what it means  and how diagonalization is connected to eigenvectors andß ß
eigenvalues.


