Diagonalization Example

Can we diagonalize: $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$? That is, can we factor

 $A = P_{\mathcal{B}}DP_{\mathcal{B}}^{-1}$ for some basis \mathcal{B} and some diagonal matrix D?

The answer is "yes" \underline{if} we can find a basis consisting of eigenvectors of A. (See the notes: *Introduction to Diagonalization* from the preceding lecture.)

We need see, first if we can find any eigenvectors at all. An eigenvector is a <u>nonzero</u> solution to $A\boldsymbol{x} = \lambda \boldsymbol{x}$ (where λ can be any scalar). So, if this is possible, there are really two "unknown" items at this point: the λ , and the corresponding \boldsymbol{x} 's.

We can rewrite $A\mathbf{x} = \lambda \mathbf{x}$ as $(A - \lambda I)\mathbf{x} = \mathbf{0}$ where *I* is the identity matrix. This <u>homogeneous</u> equation has a <u>nonzero</u> (=nontrivial) solution for \mathbf{x} if and only if $\det(A - \lambda I) = 0$. We use this fact first to find the possible λ 's (eigenvalues); then, for each possible λ , separately, we find the corresponding \mathbf{x} 's (eigenvectors)

For the given matrix A:

(*)
$$(A - \lambda I)\boldsymbol{x} = \boldsymbol{0}$$

$$\begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$$
det $\begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix} = -(2 - \lambda)(6 + \lambda) - 9$
 $= \lambda^2 + 4\lambda - 21 = (\lambda + 7)(\lambda - 3) = 0$ so $\lambda = -7$ or 3.
(*) will have nonzero solutions for \boldsymbol{x} if and only if $\lambda = -7$ or $\lambda = 3$.
For $\lambda = -7$:
 $(A + 7I)\boldsymbol{x} = \boldsymbol{0}$

$$\begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & 0 \end{bmatrix} \text{ so } \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{3} \\ 1 \end{bmatrix}$$

By rescaling, we can rewrite the general solution (for neatness) as $\boldsymbol{x} = s \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ So, then eigenvectors corresponding to $\lambda = -7$ are the nonzero multiples of $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

For
$$\lambda = \underline{3}$$
:

$$(A-3I)\boldsymbol{x} = \boldsymbol{0}$$
$$\begin{bmatrix} -1 & 3\\ 3 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & -3\\ 0 & 0 \end{bmatrix} \quad \boldsymbol{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

So, then eigenvectors corresponding to $\lambda = 3$ are the nonzero multiples of $\begin{bmatrix} 3\\1 \end{bmatrix}$. If we pick one eigenvector for each eigenvalue, we can get a basis (consisting of eigenvectors) for \mathbb{R}^2 . $\mathcal{B} = \{ \begin{bmatrix} 1\\-3 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \}$

According to the notes, we can diagonalize A as

$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} -7 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{10} & -\frac{3}{10} \\ \frac{3}{10} & \frac{1}{10} \end{bmatrix}$$
$$P_{\mathcal{B}} \qquad D \qquad P_{\mathcal{B}}^{-1}$$

where the diagonal matrix D is created using the eigenvalues for the eigenvectors in the columns of $P_{\mathcal{B}}$ (in the same order).

An additional observation about what diagonalization can be useful in computations: If $A = PDP^{-1}$, then

$$\begin{aligned} A^{2} &= (PDP^{-1})(PDP^{-1}) = PD^{2}P^{-1} \\ A^{3} &= A^{2}A = (PD^{2}P^{-1})(PDP^{-1}) = PD^{3}P^{-1} \\ &\vdots \\ A^{n} &= A^{n-1}A = (PD^{n-1}P^{-1})(PDP^{-1}) = PD^{n}P^{-1} \end{aligned}$$

This makes computing powers of A much easier: very handy if n is large, and even more so if A is a very large sized matrix. A "small" example, from above:

$$A^{20} = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} -7 & 0 \\ 0 & 3 \end{bmatrix}^{20} \begin{bmatrix} \frac{1}{10} & -\frac{3}{10} \\ \frac{3}{10} & \frac{1}{10} \end{bmatrix} = = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 7^{20} & 0 \\ 0 & 3^{20} \end{bmatrix} \begin{bmatrix} \frac{1}{10} & -\frac{3}{10} \\ \frac{3}{10} & \frac{1}{10} \end{bmatrix}$$

1.0e+016 *

0.79792297678672 -2.39376788432483 -2.39376788432483 7.18130400165292 ← Matlab's notation: each entry in the displayed matrix is by 10¹⁶ (of course, there's roundoff in Matlab's answer)