Remember: We observed that for any two matrices A, B with sizes so that $A B$ is defined:

$$
\operatorname{row}_{i}(A B)=\operatorname{row}_{i}(A) \cdot B \quad(\text { we use this over } \& \text { over, below })
$$

Theorem Multiplying a matrix A, on the left, by an elementary matrix E (of the correct size) performs the same elementary row operation on A as was used to create E from I.

To keep the notation simple, we assume A is a 3×3 matrix and that I is the 3×3 identity matrix.

So the following is not exactly a proof (because it's restricted to just the 3×3 case. But exactly the same method are used in the case where A is $m \times n$ and I is the $m \times m$ identity matrix: it's just a bit harder to write it all down in general. If you understand the 3×3 situation, then you'll understand why it always works.
"Proof" There are three kinds of ERO that might be used to create E from I_{3}. We look at each one, separately, in order to see why the theorem is true for that kind of elementary matrix E.

1) Add a multiple of one row to another Suppose, for example, that E is obtained from $I=I_{3}$ by adding -2 (row 1) to row 3

$$
E=\left[\begin{array}{c}
\operatorname{row}_{1} E \\
\operatorname{row}_{2} E \\
\operatorname{row}_{3} E
\end{array}\right]=\left[\begin{array}{c}
\operatorname{row}_{1} I \\
\operatorname{row}_{2} I \\
-2\left(\operatorname{row}_{1} I\right)+\operatorname{row}_{3} I
\end{array}\right]
$$

Then $E A=\left[\begin{array}{c}\operatorname{row}_{1} E A \\ \operatorname{row}_{2} E A \\ \operatorname{row}_{3} E A\end{array}\right]=\left[\begin{array}{c}\left(\operatorname{row}_{1} E\right) A \\ \left(\operatorname{row}_{2} E\right) A \\ \left(\operatorname{row}_{3} E\right) A\end{array}\right]=\left[\begin{array}{c}\left(\operatorname{row}_{1} I\right) A \\ \left(\operatorname{row}_{2} I\right) A \\ \left(-2\left(\operatorname{row}_{1} I\right)+\operatorname{row}_{3} I\right) A\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{c}
\operatorname{row}_{1}(I A) \\
\operatorname{row}_{2}(I A) \\
-2\left(\operatorname{row}_{1} I\right) A+\operatorname{row}_{3}(I) A
\end{array}\right]=\left[\begin{array}{c}
\operatorname{row}_{1}(I A) \\
\operatorname{row}_{2}(I A) \\
-2 \operatorname{row}_{1}(I A)+\operatorname{row}_{3}(I A)
\end{array}\right] \\
& =\left[\begin{array}{c}
\operatorname{row}_{1}(A) \\
\operatorname{row}_{2}(A) \\
-2 \operatorname{row}_{1}(A)+\operatorname{row}_{3}(A)
\end{array}\right] . \text { So the effect of computing } E A \text { is }
\end{aligned}
$$

the same as performing the row operation "add -2 (row 1) to row 3 " on A.
2) Interchange two rows Suppose, for example, that E is obtained from I by interchanging rows 1 and 3
$E=\left[\begin{array}{l}\operatorname{row}_{1} E \\ \operatorname{row}_{2} E \\ \operatorname{row}_{3} E\end{array}\right]=\left[\begin{array}{l}\operatorname{row}_{3} I \\ \operatorname{row}_{2} I \\ \operatorname{row}_{1} I\end{array}\right]$
Then $E A=\left[\begin{array}{c}\mathrm{row}_{1} E A \\ \operatorname{row}_{2} E A \\ \mathrm{row}_{3} E A\end{array}\right]=\left[\begin{array}{c}\left(\mathrm{row}_{1} E\right) A \\ \left(\mathrm{row}_{2} E\right) A \\ \left(\mathrm{row}_{3} E\right) A\end{array}\right]=\left[\begin{array}{c}\left(\mathrm{row}_{3} I\right) A \\ \left(\mathrm{row}_{2} I\right) A \\ \left(\mathrm{row}_{1} I\right) A\end{array}\right]$

$$
=\left[\begin{array}{c}
\operatorname{row}_{3}(I A) \\
\operatorname{row}_{2}(I A) \\
\operatorname{row}_{1}(I A)
\end{array}\right]=\left[\begin{array}{c}
\operatorname{row}_{3} A \\
\operatorname{row}_{2} A \\
\operatorname{row}_{1} A
\end{array}\right] \text { So the effect of computing } E A \text { is }
$$

the same as performing the row operation "interchange rows 1 and 3 " on A.
3) Rescale a row by a nonzero constant c Suppose, for example, that E is obtained by rescaling a row (let's say row 1) of I by a factor of $k(\neq 0)$.
$E=\left[\begin{array}{c}\operatorname{row}_{1} E \\ \operatorname{row}_{2} E \\ \operatorname{row}_{3} E\end{array}\right]=\left[\begin{array}{c}k \operatorname{row}_{1} I \\ \operatorname{row}_{2} I \\ \operatorname{row}_{3} I\end{array}\right]$
Then $E A=\left[\begin{array}{c}\operatorname{row}_{1} E A \\ \operatorname{row}_{2} E A \\ \operatorname{row}_{3} E A\end{array}\right]=\left[\begin{array}{c}\left(\mathrm{row}_{1} E\right) A \\ \left(\mathrm{row}_{2} E\right) A \\ \left(\mathrm{row}_{3} E\right) A\end{array}\right]=\left[\begin{array}{c}\left(k \mathrm{row}_{1} I\right) A \\ \left(\mathrm{row}_{2} I\right) A \\ \left(\mathrm{row}_{1} I\right) A\end{array}\right]$
$=\left[\begin{array}{c}k \operatorname{row}_{1}(I A) \\ \operatorname{row}_{2}(I A) \\ \left(\operatorname{row}_{1}(I A)\right.\end{array}\right]=\left[\begin{array}{c}k \operatorname{row}_{1} A \\ \operatorname{row}_{2} A \\ \left(\operatorname{row}_{1} A\right.\end{array}\right]$ So the effect of computing $E A$ is
the same as performing the row operation "rescale row 1 by a factor of k " on A.

