How can we tell if a 2×2 *matrix* A *has any eigenvalues or eigenvectors?*

An eigenvector \mathbf{x} , with eigenvalue λ , is (by definition) a <u>nonzero</u> solution to $A\mathbf{x} = \lambda \mathbf{x}$. This equation can be rewritten as

$$A\boldsymbol{x} - \lambda \boldsymbol{x} = \boldsymbol{0}$$

 $(A - \lambda I)\boldsymbol{x} = \boldsymbol{0}$ where $I = I_2 = the \ 2 \times 2$ identity matrix

This equation will have a <u>nonzero</u> solution for \boldsymbol{x} if and only if $det(A - \lambda I) = 0$.

Given a specific matrix A, $det(A - \lambda I)$ is an expression involving an "unknown" λ . If we find a solution λ for the equation $det(A - \lambda I) = 0$, then, for that λ , $A\mathbf{x} = \lambda \mathbf{x}$ will have a nontrivial solution for \mathbf{x} . Each such solution $\mathbf{x} \neq \mathbf{0}$ is an eigenvector of A with eigenvalue λ .

If, for example, $\lambda = -5$ is a solution to $det(A - \lambda I) = 0$, then we know -5 is an eigenvalue because equation $A\mathbf{x} = -5\mathbf{x}$ must have nontrivial solutions for \mathbf{x} . These nontrivial solutions are the eigenvectors corresponding to eigenvalue $\lambda = -5$. We would find these eigenvectors by solving $A\mathbf{x} = -5\mathbf{x}$. To do that, rewrite it as a homogeneous system

$$A\boldsymbol{x} = -5I\boldsymbol{x}$$
$$(A+5I)\boldsymbol{x} = \boldsymbol{0}$$

This seems a bit abstract until you actually think through the steps in a specific situation - so here goes.

a) Let $A = \begin{bmatrix} 1 & 12 \\ 1 & 2 \end{bmatrix}$. Write the matrix $(A - \lambda I)$, and evaluate det $(A - \lambda I)$. Your answer is in terms of an "unknown" λ .

Then solve the equation $det(A - \lambda I) = 0$ for λ .

For this problem, you should find two distinct solutions : $\lambda = ?$ and $\lambda = ??$.

b) Separately, for each λ from part a): substitute λ in the equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$ and find the solutions for \mathbf{x} (the <u>nonzero</u> solutions are the eigenvectors for that eigenvalue λ .)

c) Is the matrix A diagonalizable? (Look at Theorem 2 in the notes "Introduction to Diagonalization.") If it is, what are the matrices P, D, P^{-1} for which $A = PDP^{-1}$?

2. Suppose
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
.
Notice that $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$.
Choose $\mathcal{B} = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \}$ to be a new basis for \mathbb{R}^2
If \boldsymbol{x} is in \mathbb{R}^2 and $[\boldsymbol{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$, what is $A\boldsymbol{x}$?

(Note: try to answer the question without actually multiplying out

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
 to get the matrix A.)

3. Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

a) Describe the mapping $\boldsymbol{x} \mapsto A\boldsymbol{x}$ geometrically. Explain briefly how you know this. (How does A "move things around"? *Hint: Consider first what the mapping does to* $\boldsymbol{e_1}$, then $\boldsymbol{e_2}$. What does the mapping do to the unit square?)

b) A has <u>no</u> eigenvalues.

i) Explain why there are no eigenvalues using some <u>algebraic</u> calculations: can $A\mathbf{x} = \lambda \mathbf{x}$ ever be true if $\mathbf{x} \neq \mathbf{0}$?

ii) Explain why there are no eigenvalues using the geometry of your answer in part a)

c) Is A diagonalizable?