Homework Problem Supplement for the Introduction to Diagonalization Read that material before attempting these problems.

$\underline{\text { How can we tell if a } 2 \times 2 \text { matrix } A}$ has any eigenvalues or eigenvectors?

An eigenvector \boldsymbol{x}, with eigenvalue λ, is (by definition) a nonzero solution to $A \boldsymbol{x}=\lambda \boldsymbol{x}$. This equation can be rewritten as

$$
\begin{aligned}
& A \boldsymbol{x}-\lambda \boldsymbol{x}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{x}=\mathbf{0} \quad \text { where } I=I_{2}=\text { the } 2 \times 2 \text { identity matrix }
\end{aligned}
$$

This equation will have a nonzero solution for \boldsymbol{x} if and only if $\operatorname{det}(A-\lambda I)=0$.
Given a specific matrix $A, \operatorname{det}(A-\lambda I)$ is an expression involving an "unknown" λ. If we find a solution λ for the equation $\operatorname{det}(A-\lambda I)=0$, then, for that $\lambda, A \boldsymbol{x}=\lambda \boldsymbol{x}$ will have a nontrivial solution for \boldsymbol{x}. Each such solution $\boldsymbol{x} \neq \mathbf{0}$ is an eigenvector of A with eigenvalue λ.

If, for example, $\lambda=-5$ is a solution to $\operatorname{det}(A-\lambda I)=0$, then we know -5 is an eigenvalue because equation $A \boldsymbol{x}=-5 \boldsymbol{x}$ must have nontrivial solutions for \boldsymbol{x}. These nontrivial solutions are the eigenvectors corresponding to eigenvalue $\lambda=-5$. We would find these eigenvectors by solving $A \boldsymbol{x}=-5 \boldsymbol{x}$. To do that, rewrite it as a homogeneous system

$$
\begin{aligned}
& A \boldsymbol{x}=-5 I \boldsymbol{x} \\
& (A+5 I) \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

This seems a bit abstract until you actually think through the steps in a specific situation - so here goes.
a) Let $A=\left[\begin{array}{cc}1 & 12 \\ 1 & 2\end{array}\right]$. Write the matrix $(A-\lambda I)$, and evaluate $\operatorname{det}(A-\lambda I)$. Your answer is in terms of an "unknown" λ.

Then solve the equation $\operatorname{det}(A-\lambda I)=0$ for λ.

For this problem, you should find two distinct solutions : $\lambda=$? and $\lambda=$??.
b) Separately, for each λ from part a): substitute λ in the equation $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ and find the solutions for \boldsymbol{x} (the nonzero solutions are the eigenvectors for that eigenvalue λ.)
c) Is the matrix A diagonalizable? (Look at Theorem 2 in the notes "Introduction to Diagonalization.") If it is, what are the matrices P, D, P^{-1} for which $A=P D P^{-1}$?
2. Suppose $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{rr}3 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rc}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right]$.

Notice that $\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{rr}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right]$.
Choose $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$ to be a new basis for \mathbb{R}^{2}
If \boldsymbol{x} is in \mathbb{R}^{2} and $[\boldsymbol{x}]_{\mathcal{B}}=\left[\begin{array}{r}3 \\ -7\end{array}\right]$, what is $A \boldsymbol{x}$?
(Note: try to answer the question without actually multiplying out
$\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{rr}3 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right]$ to get the matrix A.)
3. Let $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
a) Describe the mapping $\boldsymbol{x} \mapsto A \boldsymbol{x}$ geometrically. Explain briefly how you know this.
(How does A "move things around"? Hint: Consider first what the mapping does to e_{1}, then \boldsymbol{e}_{2}. What does the mapping do to the unit square?)
b) A has no eigenvalues.
i) Explain why there are no eigenvalues using some algebraic calculations: can $A \boldsymbol{x}=\lambda \boldsymbol{x}$ ever be true if $\boldsymbol{x} \neq \mathbf{0}$?
ii) Explain why there are no eigenvalues using the geometry of your answer in part a)
c) Is A diagonalizable?

