Inner Product Spaces

In \mathbb{R}^{n}, we have an inner product $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=u_{1} v_{1}+\ldots+u_{n} v_{n}$. Another notation sometimes used is

$$
<\boldsymbol{u}, \boldsymbol{v}>=\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=u_{1} v_{1}+\ldots+u_{n} v_{n}
$$

The inner product in $\langle u, v\rangle$ in \mathbb{R}^{n} has several essential properties (see Theorem 1, p. 331) that we have used repeatedly:
a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \boldsymbol{u}\rangle$
b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{u}, \boldsymbol{w}\rangle+\langle\boldsymbol{v}, \boldsymbol{w}\rangle$
c) $\langle\mathrm{c} \boldsymbol{u}, \boldsymbol{v}\rangle=c<\boldsymbol{u}, \boldsymbol{v}\rangle$
d) $\langle\boldsymbol{u}, \boldsymbol{u}\rangle \geq 0$ and $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=0$ if and only if $\boldsymbol{u}=\mathbf{0}$.

We defined the "length" of a vector \boldsymbol{u} by $\|\boldsymbol{u}\|=\sqrt{\langle\boldsymbol{u}, \boldsymbol{u}\rangle}$, and the distance between two vectors $\boldsymbol{u}, \boldsymbol{v}$ as $\|\boldsymbol{u}-\boldsymbol{v}\|=\sqrt{\langle\boldsymbol{u}-\boldsymbol{v}, \boldsymbol{u}-\boldsymbol{v}\rangle}$

Earlier in the course, we used the essential properties of vectors in \mathbb{R}^{n} as the starting point to define more general vector spaces $V(p .190)$. In the same spirit, we now use the properties a)-d) to describe the "essential properties" for an inner product in any vector space - for a vector space V with real scalars: any rule that creates a scalar $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ for each pair of vectors $\boldsymbol{u}, \boldsymbol{v}$ in V and satisfies a) - d) will be called an inner product in V. (Properties $a)-d$) are modified slightly when complex scalars are allowed.) A vector space V with an inner product defined is called an inner product space. Because such an inner product "acts just like" the inner product from \mathbb{R}^{n}, many of the theorems we proved about inner products for \mathbb{R}^{n} remain true for inner products in other spaces. You can look at a basic introduction to this material in Section 6.7 of the textbook.

Here is a little more detail involving one specific example

Let $C[-\pi, \pi]$ be the vector space of all continuous real-valued functions defined on the interval $[-\pi, \pi]$: call it C, for short.

For vectors (functions) f, g in C, define an inner product by

$$
<f, g>=\text { the number } \int_{-\pi}^{\pi} f(x) g(x) d x
$$

Then $\langle f, g\rangle$ satisfies all the essential properties a) - d) for an inner product listed above:
a) $\langle f, g\rangle=\langle g, f\rangle$
because $\int_{-\pi}^{\pi} f(x) g(x) d x=\int_{-\pi}^{\pi} g(x) f(x) d x$
b) $<f+g, h>=<f, h>+<g, h>$
because $\int_{-\pi}^{\pi}(f(x)+g(x)) h(x) d x=\int_{-\pi}^{\pi} f(x) h(x) d x+\int_{-\pi}^{\pi} g(x) h(x) d x$
c) $\langle\mathrm{c} f, g\rangle=c<f, g\rangle$
d) $\langle f, f\rangle \geq 0$ and $\langle f, f\rangle=0$ if and only if $f=\mathbf{0}$ ($=$ the constant function $\mathbf{0}$) You should check c) and d). The last part of d) requires that you use the fact that functions f in C are continuous.

Continuing in parallel with our definitions in \mathbb{R}^{n} :

Define the norm (or "length") of f by $\|f\|=\sqrt{\langle f, f>}=\sqrt{\int_{-\pi}^{\pi} f^{2}(x) d x}$
and the distance between f and g as

$$
\|f-g\|=\sqrt{\int_{-\pi}^{\pi}(f(x)-g(x))^{2} d x}
$$

We say that f and g are orthogonal $(f \perp g)$ if $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x=0$
For example: on $[-\pi, \pi]$, we have $\sin \perp$ cos are orthogonal because

$$
<\sin , \cos >=\int_{-\pi}^{\pi}(\sin x)(\cos x) d x=\frac{1}{2} \int_{-\pi}^{\pi} \sin (2 x) d x=-\left.\frac{1}{2} \cos (2 x)\right|_{-\pi} ^{\pi}=0
$$

Many of the techniques we developed using inner products still work. For example:

For a subspace W of C : we can define $W^{\perp}=\{f:\langle f, g\rangle=0$ for all g in $W\}$ If W is a subspace of C with an orthogonal basis* $\left\{g_{1}, \ldots, g_{n}\right\}$ and $f \in C$ then we can uniquely write $f=\widehat{f}+g$ where $\widehat{f} \in W$ and $g \in W^{\perp}$. \widehat{f} is called the projection of f on W and \widehat{f} is given by the formula

$$
\widehat{f}=\frac{\left\langle f, g_{1}\right\rangle}{\left\langle g_{1}, g_{1}\right\rangle} g_{1}+\ldots+\frac{\left\langle f, g_{n}\right\rangle}{\left\langle g_{n}, g_{n}\right\rangle} g_{n}
$$

Then \widehat{f} is the function in W closest to f, that is the function in W for which

$$
\|f-\widehat{f}\|<\|f-g\| \text { for all } g \text { in } W \text { different from } \widehat{f}
$$

If $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a basis for a subspace W of C, we can convert the basis into an orthogonal basis using the same Gram Schmidt process formulas.

Note: Unlike \mathbb{R}^{n}, C is not finite dimensional. But for the results just listed, that doesn't matter. What does matter is that the subspace W is finite dimensional.

A sample calculation with polynomials in C

Let W be the subspace of polynomials on $[-\pi, \pi]$ with degree ≤ 5 :

$$
W=\operatorname{Span}\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\}
$$

Find the polynomial in W closest to the function sin. (Watch how the steps parallel what we'd do in \mathbb{R}^{n} : Matlab will handle the details for us).

The polynomial we want is $q=\widehat{\widehat{\sin }}=\operatorname{proj}_{W}$ sin. This polynomial is the closest in W to the function sin in the sense of the distance we defined:

The approximation error $\|q-\sin \|=\left(\int_{-\pi}^{\pi}|q(x)-\sin x|^{2} d x\right)^{1 / 2} \quad \underline{\text { is smaller than }}$

$$
\|p-\sin \|=\left(\int_{-\pi}^{\pi}|p(x)-\sin x|^{2} d x\right)^{1 / 2} \text { for any other } p \in W
$$

In that sense, q is the "best available approximation in W for sin."
It's easy to compute $\operatorname{proj}_{U} \sin$ if we choose an orthonormal basis for W, so we convert the standard basis

$$
\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}=\left\{1, x, x^{2}, \ldots, x^{5}\right\} \text { for } W
$$

$$
\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{6}\right\}
$$

using the Gram-Schmidt Process (with normalization at each step).
Note: the integrations below were done using Matlab. Notice that every integration needed to find the e_{i} 's is very easy, but that the constants that arise are messy and pile up fast; they can easily lead to errors when the computation is done by hand. Try to compute at least e_{1}, e_{2}, e_{3} for yourself (with or without computer assistance) to be sure you understand what's going on. The steps are the same as for the usual Gram Schmidt process in \mathbb{R}^{n}.

We start with the first basis vector $v_{1}=1$. But v_{1} is not a unit vector in C because $\left\|v_{1}\right\|^{2}=\|1\|^{2}=\int_{-\pi}^{\pi} 1 \cdot 1 d x=2 \pi$. So we normalize and use

$$
e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\|1\|}=\frac{1}{\sqrt{2 \pi}}
$$

For $j=2, \ldots, 6$ in turn we use the Gram Schmidt formula, normalizing at each step to get a unit vector:

$$
e_{j}=\frac{v_{j}-<v_{j}, e_{1}>e_{1}-<v_{j}, e_{2}>e_{2}-\ldots-<v_{j}, e_{j-1}>e_{j-1}}{\left\|v_{j}-<v_{j}, e_{1}>e_{1}-<v_{j}, e_{2}>e_{2}-\ldots-<v_{j}, e_{j-1}>e_{j-1}\right\|}
$$

So

$$
\begin{aligned}
e_{2} & =\frac{v_{2}-<v_{2}, e_{1}>e_{1}}{\left\|v_{2}-<v_{2}, e_{1}>e_{1}\right\|}=\frac{x-\left(\int_{-\pi}^{\pi} x \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi}}}{\left\|x-\left(\int_{-\pi}^{\pi} x \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi}}\right\|} \\
& =\frac{x}{\|x\|} \quad\left(\text { since } \int_{-\pi}^{\pi} x d x=0\right) \\
& =\frac{x}{\left(\int_{-\pi}^{\pi} x \cdot x d x\right)^{1 / 2}}=\frac{x}{\frac{1}{3} \pi(6 \pi)^{1 / 2}}=\frac{\sqrt{6} x}{2 \pi \sqrt{\pi}}
\end{aligned}
$$

Then e_{3}

$$
\begin{aligned}
& =\frac{v_{3}-<v_{3}, e_{1}>e_{1}-<v_{3}, e_{2}>e_{2}}{\left\|v_{3}-<v_{3}, e_{1}>e_{1}-<v_{3}, e_{2}>e_{2}\right\|}=\frac{x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{1} d x\right) e_{1}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{2} d x\right) e_{2}}{\left\|x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{1} d x\right) e_{1}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{2} d x\right) e_{2}\right\|} \\
& =\frac{x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi}}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}} d x\right) \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}}}{\left\|x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi}}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{\sqrt{6 x}}{2 \pi \sqrt{\pi}} d x\right) \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}}\right\|}
\end{aligned}
$$

Notice that each integration requires no calculus harder than $\int x^{n} d x$. But already the constants are becoming a headache.

$$
=\quad \ldots \quad=\frac{1}{8} \frac{\sqrt{8} \sqrt{45}\left(x^{2}-\frac{1}{3} \pi^{2}\right)}{\sqrt{\pi^{5}}}
$$

Continuing in this way gives:

$$
\begin{aligned}
& e_{4}=\ldots=\frac{1}{8} \frac{\sqrt{175} \sqrt{8}\left(x^{3}-\frac{3}{5} \pi^{2} x\right)}{\sqrt{\pi^{7}}} \\
& e_{5}=\quad \ldots=\frac{1}{128} \frac{\sqrt{11025} \sqrt{128}\left(x^{4}-\frac{1}{5} \pi^{4}-\frac{6}{7} \pi^{2}\left(x^{2}-\frac{1}{3} \pi^{2}\right)\right)}{\sqrt{\pi^{9}}}, \text { and finally } \\
& e_{6}=\quad \ldots=\frac{1}{128} \frac{\sqrt{128} \sqrt{43659}\left(x^{5}-\frac{3}{7} \pi^{4} x-\frac{10}{9} \pi^{2}\left(x^{3}-\frac{3}{5} \pi^{2} x\right)\right)}{\sqrt{\pi^{11}}}
\end{aligned}
$$

Then e_{1}, \ldots, e_{6} are orthogonal polynomials of degree ≤ 5; we use them as our orthogonal basis for W. With them, we can use the projection formula to compute

$$
\begin{aligned}
& q(x)=\operatorname{Proj}_{W} \sin x=<\sin x, e_{1}>e_{1}+<\sin x, e_{2}>e_{2}+\ldots+<\sin x, e_{6}>e_{6} \\
& =\left(\int_{-\pi}^{\pi}(\sin x) e_{1} d x\right) e_{1}+\left(\int_{-\pi}^{\pi}(\sin x) e_{2} d x\right) e_{2}+\ldots+\left(\int_{-\pi}^{\pi}(\sin x) e_{6} d x\right) e_{6} \\
& =\left(\int_{-\pi}^{\pi}(\sin x) \frac{1}{\sqrt{2 \pi}} d x\right) \frac{1}{\sqrt{2 \pi}}+\left(\int_{-\pi}^{\pi}(\sin x) \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}} d x\right) \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}} \\
& \quad+\left(\int_{-\pi}^{\pi}(\sin x) \frac{1}{8} \frac{\sqrt{8} \sqrt{45}\left(x^{2}-\frac{1}{3} \pi^{2}\right)}{\sqrt{\pi^{5}}} d x\right) \cdot \frac{1}{8} \frac{\sqrt{8} \sqrt{45}\left(x^{2}-\frac{1}{3} \pi^{2}\right)}{\sqrt{\pi^{5}}} \\
& \quad+\ldots+\text { three more terms corresponding to } e_{4}, e_{5}, \text { and } e_{6}
\end{aligned}
$$

(Notice that the integrations involved are now more challenging because they involve terms like $\int x^{n} \sin x d x$. But they are manageable, with enough patience, using integration by parts.)

When all the smoke clears, Matlab gives

$$
\begin{align*}
q(x)=\frac{21}{8 \pi^{10}}\left(\left(33 \pi^{4}-3465 \pi^{2}+31185\right) x^{5}\right. & +\left(3750 \pi^{4}-30 \pi^{6}-34650 \pi^{2}\right) x^{3} \\
& \left.\left.+\left(5 \pi^{8}-765 \pi^{6}+7425 \pi^{4}\right) x\right)\right) \tag{}
\end{align*}
$$

If we convert the exact coefficients in (*) to approximate decimal coefficients we have

$$
q(x) \approx 0.98786213557467 x-0.15527141063343 x^{3}+0.00564311797635 x^{5}
$$

In the sense of the distance || || that we defined in C, q is the closest polynomial with degree ≤ 5 to the function sin. (Remember from the definition of C : all this is happening over the interval $[-\pi, \pi]$.)

For comparison: there is a $5^{\text {th }}$ degree polynomial approximation for $\sin x$ that is better known - namely, the $5^{\text {th }}$ degree Taylor polynomial,

$$
T_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(v)}(x)}{5!} x^{5} .
$$

For $f(x)=\sin x$, this gives

$$
\sin x \approx T_{5}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

With approximate decimal coefficients,

$$
T_{5}(x)=x-0.16666666666667 x^{3}+0.00833333333333 x^{5}
$$

Because $T_{5}(x)$ is constructed using derivatives of f at 0 , it turns to be the better approximation for $\sin x$ near 0 , but it produces a larger and larger error as x gets further and further from 0 .

We can see this in the figure on the next page.

The figure below shows the graphs of $\sin x, T_{5}(x)$ and $q(x)$ on the interval $[-\pi, \pi]$.

Across the whole interval $[-\pi, \pi]$: the graphs of $\sin x$ and $q(x)$ are so close that they visually coincide at the scale of this graph: you can see the difference between them. Near 0, you also can't see the difference between $T_{5}(x)$ and $\sin x$, but that difference becomes clear in the picture as you move further from 0 and closer to the endpoints $\pm \pi$.

The table on the following page illustrates three things (the third is not clear from the graphs above):
i) As we move away from 0 toward $\pm \pi$, the approximation to $\sin x$ using $T_{5}(x)$ is not as good as the $q(x)$ approximation
ii) Linear algebra gives us the $q(x)$ approximation. It has the advantage that it gives us a good approximation for $\sin x$ over the whole interval $[-\pi, \pi]$.
iii) The Taylor polynomial $T_{5}(x)$ is actually a better approximation than $q(x)$ to $\sin x$ when x is near 0 (in some sense, $T_{5}(x)$ is actually the best of all $5^{\text {th }}$ degree polynomials to approximate $\sin x$ near 0).

All table values are rounded to 4 significant digits
so, for example, 0.0000 is not exactly 0

x	$\sin x$	$T_{5}(x)$	$q(x)$	$\begin{aligned} & \mid \text { Error } \mid= \\ & \left\|\sin x-T_{5}(x)\right\| \end{aligned}$	$\begin{aligned} & \mid \text { Error } \mid= \\ & \|\sin x-q(x)\| \end{aligned}$		
-3.1416	-0.0000	-0.5240	-0.0160	$0.5240 \leftarrow$ large T_{5}	$0.0160 \leftarrow \operatorname{smallish} q$		
-2.9416	-0.1987	-0.5347	-0.1966	$0.3361 \leftarrow$ \|error		$0.0021 \leftarrow$ \|error	
-2.7416	-0.3894	-0.5979	-0.3827	$0.2084 \leftarrow$ near $-\boldsymbol{\pi}$	$0.0067 \leftarrow$ over		
-2.5416	-0.5646	-0.6891	-0.5600	0.1244	$0.0047 \leftarrow$ the whole		
-2.3416	-0.7174	-0.7884	-0.7169	0.0710	$0.0005 \leftarrow$ interval		
-2.1416	-0.8415	-0.8800	-0.8447	0.0385	0.0032		
-1.9416	-0.9320	-0.9516	-0.9372	0.0196	0.0052		
-1.7416	-0.9854	-0.9947	-0.9906	0.0092	0.0052 I		
-1.5416	-0.9996	-1.0035	-1.0032	0.0040	0.0036		
-1.3416	-0.9738	-0.9754	-0.9749	0.0015	0.0011		
-1.1416	-0.9093	-0.9098	-0.9077	0.0005	0.0016		
-0.9416	-0.8085	-0.8086	-0.8047	0.0001	0.0038		
-0.5416	-0.5155	-0.5155	-0.5106	$0.0000 \leftarrow$ very	$0.0049 \leftarrow$ but \|error		
-0.3416	-0.3350	-0.3350	-0.3313	$0.0000 \leftarrow$ small	$0.0037 \leftarrow$ for \boldsymbol{q}		
-0.1416	-0.1411	-0.1411	-0.1394	$0.0000 \leftarrow$ \|error		$0.0017 \leftarrow$ near $\mathbf{0}$	
0.0584	0.0584	0.0584	0.0577	$0.0000 \leftarrow$ near 0	$0.0007 \leftarrow$ is larger		
0.2584	0.2555	0.2555	0.2526	$0.0000 \leftarrow$ using	$0.0029 \leftarrow$ than for the		
0.4584	0.4425	0.4425	0.4380	$0.0000 \leftarrow T_{5}$	$0.0045 \leftarrow \mathbf{T}_{5}$		
0.6584	0.6119	0.6119	0.6068	$0.0000 \leftarrow$ approx	$0.0051 \leftarrow$ approx		
0.8584	0.7568	0.7569	0.7524	0.0001	0.0044		
1.0584	0.8716	0.8719	0.8690	0.0003	0.0026		
1.2584	0.9516	0.9526	0.9515	0.0010	0.0001		
1.4584	0.9937	0.9964	0.9963	0.0027	0.0026		
1.6584	0.9962	1.0028	1.0009	0.0066	0.0047		
1.8584	0.9589	0.9734	0.9644	0.0145	0.0054 I		
2.0584	0.8835	0.9128	0.8877	0.0293	0.0043		
2.2584	0.7728	0.8282	0.7740	0.0554	0.0012		
2.4584	0.6313	0.7304	0.6283	0.0991	$0.0030 \leftarrow$ smallish \boldsymbol{q}		
2.6584	0.4646	0.6336	0.4583	0.1690	$0.0063 \leftarrow$ \|error		
2.8584	0.2794	0.5561	0.2742	$0.2767 \leftarrow$ large \boldsymbol{T}_{5}	$0.0052 \leftarrow$ over		
3.0584	0.0831	0.5204	0.0894	$0.4373 \leftarrow$ \|error		$0.0063 \leftarrow$ the whole	
3.1416	9.0000	0.5240	$0.0160 \quad 0$	$0.5240 \leftarrow$ near $\boldsymbol{\pi}$	$0.0160 \leftarrow$ interval		

One more example, without many details

We are still working in the vector space C of continuous functions on the interval $[-\pi, \pi]$.

Pink an n and consider the subspace

$$
W=\operatorname{Span}\{1, \sin x, \sin 2 x, \ldots, \sin n x, \cos x, \ldots, \cos n x\}
$$

A function in W is a linear combination of the basis elements:

$$
\begin{equation*}
\text { (*) } \quad a_{0}+a_{1} \cos x+\ldots+a_{n} \cos n x+b_{1} \sin x+\ldots+b_{n} \sin n x \tag{*}
\end{equation*}
$$

You can check that these functions form an orthogonal basis for W :
For example, to show $\sin 2 x \perp \cos 3 x$:

$$
<\sin 2 x, \cos 3 x>=\int_{-\pi}^{\pi}(\sin 2 x)(\cos 3 x) d x
$$

$$
\begin{array}{ll}
\text { Since } & \sin (\alpha+\beta) \\
\text { and } & \sin (\alpha-\beta) \\
\text { then } & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
\sin (\alpha+\beta)+\sin (\alpha-\beta) & =2 \sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{array}
$$

If we let $\alpha=2 x$ and $\beta=3 x$, we

$$
\begin{aligned}
\sin (5 x)+\sin (-x) & & =2 \sin (2 x) \cos (3 x) \\
\text { so } \quad \frac{1}{2}(\sin (5 x)-\sin (x)) & & =\sin (2 x) \cos (3 x)
\end{aligned}
$$

Therefore $\int_{-\pi}^{\pi}(\sin 2 x)(\cos 3 x) d x=\frac{1}{2} \int_{-\pi}^{\pi} \sin (5 x)-\sin (x) d x$

$$
=\left.\frac{1}{2}\left(-\frac{1}{5} \cos 5 x+\cos x d x\right)\right|_{-\pi} ^{\pi}=0
$$

If f is any function in C, we can compute $\operatorname{proj}_{W} f=\widehat{f}=$ the function in W closest to f, \widehat{f} is a function that looks like $(*)$

For the denominators, we can calculate

$$
\begin{aligned}
& <1,1>=\int_{-\pi}^{\pi} 1 \cdot 1 d x=2 \pi \\
& <\cos k x, \cos k x>=\int_{-\pi}^{\pi} \cos ^{2} k x d x=\pi \\
& <\sin k x, \sin k x>=\int_{-\pi}^{\pi} \sin ^{2} k x d x=\pi
\end{aligned}
$$

(why?)

$$
\begin{aligned}
& \widehat{=}=\frac{\langle f(x), 1\rangle}{\langle 1,1\rangle} 1+\frac{\langle f(x), \cos x\rangle}{\langle\cos x, \cos x\rangle} \cos x+\ldots+\frac{\langle f(x), \cos n x\rangle}{\langle\cos n x, \cos n x\rangle} \cos n x \\
& +\frac{\langle f(x), \sin x\rangle}{\langle\sin x, \sin x\rangle} \sin x+\ldots+\frac{\langle f(x), \sin n x\rangle}{\langle\sin n x, \sin n x\rangle} \sin n x
\end{aligned}
$$

Therefore $\operatorname{proj}_{W} f=\widehat{f}$

$$
\begin{aligned}
= & \frac{1}{2}\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot 1 d x\right) 1 \\
& +\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \cos x d x\right) \cos x+\ldots+\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \cos n x d x\right) \cos n x \\
& +\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \sin x d x\right) \sin x+\ldots+\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \sin n x d x\right) \sin n x \\
= & \frac{a_{0}}{2}+a_{1} \cos x+\ldots+a_{n} \cos n x+b_{1} \sin x+\ldots+b_{n} \sin n x
\end{aligned}
$$

So $\operatorname{proj}_{W} f=\widehat{f}=\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \cos k x+\sum_{k=1}^{n} \sin k x$
where $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot 1 d x$ and $\begin{cases}a_{k}=\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \cos k x d x\right) & \text { for } 1<k \leq n \\ b_{k}=\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \sin n x d x\right) & \text { for } 1<k \leq n\end{cases}$

The coefficients used in writing $\operatorname{proj}_{W} f$ are called the Fourier coefficients of f and the "trigonometric series" $\left({ }^{*}\right)$ is the $n^{\text {th }}$ Fourier approximation for f.

If $n \rightarrow \infty$, then $\left\|f-\operatorname{proj}_{W} f\right\| \rightarrow 0$, that is, the approximation error $\rightarrow 0$ (as measured by our distance function $\left\|f-\operatorname{proj}_{W} f\right\|$. (This is called "mean square convergence.")
"Mean square convergence" is not the same as saying:
for each $x \in[-\pi, \pi], \widehat{f}(x) \rightarrow f(x)$ (this is called pointwise convergence) It's a much harder problem to determine for which x 's this is true.

Pointwise convergence is true, for example, at any point x where f is differentiable.

