
Inner Product Spaces

In , we have an inner product ‘8 ? @ ? @† œ œ ? @  ÞÞÞ  ? @ ÞX
" " 8 8 Another notation sometimes

used is
    ? @  œ ? @ œ ? @ß † œ ? @  ÞÞÞ  ? @X

" " 8 8

The  in  inner product  ß ? @ in has several  ( ) that‘8 essential properties see Theorem 1, p. 331
we have used repeatedly:

 a)   ß   ? @ œ @ß?
 b)   ß     ß ? @ A œ ?ßA  @ A
 c)  c ß  œ -  ß ? @ ? @
 d)  0 and  if and only if  ß     ß  œ ! œ Þ? ? ? ? ? !

We defined the “length” of a vector by || || , and the distance between two? ? ? ? œ  ß 
vectors  as ? @ ? @ ? @ ? @ß ll  ll œ   ß  
Earlier in the course, we used the essential properties of vectors in as the starting point to‘8

define more general vector spaces ).  In the same spirit, we now use the properties a)-d)Z Ðp. 190
to describe the “essential properties” for an inner product in any vector space f or a vector space
Z  ß  with real scalars:   any rule that creates a scalar for each pair of vectors  in  and? @ ? @ß Z
satisfies will be called an inner product in a ) - d)     (Z Þ Properties a) - d) are modified slightly
when complex scalars are allowed.)  A vector space  with an inner product defined is called anZ
inner product space. Because such an inner product “acts just like” the inner product from ,‘8

many of the theorems we proved about inner products for  remain true for inner products in‘8

other spaces.  You can look at a basic introduction to this material in Section 6.7 of the textbook.

Here is a little more detail involving one specific example

Let  be the vector space of all continuous real-valued functions defined on theGÒ  ß Ó1 1
interval call it , for short.Ò  ß Ó À G1 1

For vectors (functions)  in   by0ß 1 Gß define an inner product

   the number  0ß 1  œ 0ÐBÑ1ÐBÑ .B
1

1

Then satisfies all the essential properties a) - d) for an inner product listed above: 0ß 1 

 a)   0ß 1   1ß 0 œ
  because  

 1 1

1 1
0ÐBÑ1ÐBÑ.B œ 1ÐBÑ0ÐBÑ .B

 b)   0  1ß 2  œ  0ß 2    1ß 2 
 because   

  1 1 1
1 1 1
Ð0ÐBÑ  1ÐBÑÑ2ÐBÑ .B œ 0ÐBÑ2ÐBÑ .B  1ÐBÑ2ÐBÑ .B

 c)  c 0ß 1  œ -  0ß 1 
 d)  0 and  if and only if the   0ß 0     0ß 0  œ ! 0 œ Ð œ Ñ! !constant function
            You should check c) and d).  The last part of d) requires that you use the fact that     
                       functions  in  are . 0 G continuous

Continuing in parallel with our definitions in :‘8



  the  (or “length”) of  by   Define norm 0 ll0 ll œ  0ß 0  œ 0 ÐBÑ .B  


#
1
1

and the      asdistance between and0 1

 ll 0  1 ll œ Ð0ÐBÑ  1ÐBÑÑ .B 


#
1
1

We say that  and  are  if 0 1 Ð0 ¼ 1Ñ  0ß 1  œ 0ÐBÑ1ÐBÑ .B œ !orthogonal 
1
1

For example:  on , we have sin cos are orthogonal becauseÒ  ß Ó ¼1 1

  œsin, cos  
 

" "
# # 1 1

1 1
1

1Ð BÑÐ BÑ .B œ Ð#BÑ .B œ  Ð#BÑl œ !sin cos sin cos

Many of the techniques we developed using inner products still work.  For example:

 For a subspace  of  we can define  for all  in [ G À [ œ Ö0 À  0ß 1  œ ! 1 [×¼

 If  is a subspace of  with an  basis  and [ G Ö1 ß ÞÞÞß 1 × 0 − Gorthogonal ‡
" 8

  then we can uniquely write  where  and .0 œ 0  1 0 − [ 1 − [s s ¼

  is called the projection of  on  and  is given by the formula0 0 [ 0s s

   0 œ 1  ÞÞÞ  1s 0ß 1  0ß 1 
1 ß 1  1 ß 1 " 8

" 8

" " 8 8

  Then  is the function in   to , that is the function in for which0 [ 0 [s closest

   || ||  for all  in different from 0  0 ll  0  1ll 1 [ 0s s

 If  is a basis for a subspace  of , we can convert the basis into anÖ0 ß 0 ß ÞÞÞß 0 × [ G" # 8

 orthogonal basis using the same Gram Schmidt process formulas.

 Note not:  Unlike ,  is  finite dimensional.  But for the results just listed, that‘8 G
 doesn't matter.    .What does matter is that the subspace is finite dimensional[

A sample calculation with polynomials in G

Let  be the subspace of polynomials on  with degree [ Ò  ß Ó Ÿ & À1 1

   Span }[ œ Ö"ß Bß B ß B ß B ß B# $ % &

Find the polynomial in  closest to the function sin.  ([ Watch how the steps parallel what we'd do
in : Matlab will handle the detail  for us‘8 = ).

The polynomial we want is  sin proj  sin This polynomial is the closest in  to the; œ œ Þ [è [

function sin in the sense of the distance we defined:



 The approximation error  sin sin  ll ;  ll œ l ;ÐBÑ  Bl .B 


#
"Î#

1
1 is smaller than

   sin sin   for any other ll :  ll œ l :ÐBÑ  Bl .B : − [ 


#
"Î#

1
1

In that sense,  is the “best available approximation in for sin.”; [

It's easy to compute proj sin  if we choose an  basis for , so we convert the Y orthonormal [
standard basis     for Ö@ ß @ ß ÞÞÞß @ × œ Ö"ß Bß B ß ÞÞÞß B ×" # '

# &  [
into an orthonormal basis we'll call  Ö/ ß / ß / ß ÞÞÞß / ×" # '$

using the Gram-Schmidt Process (with normalization at each step). 

Note: the integrations below were done using Matlab.  Notice that  integrationevery
needed to find the 's is very easy, but that the constants that arise are messy and pile up/3
fast; they can easily lead to errors when the computation is done by hand.  Try to
compute at least  e  for yourself (with or without computer assistance) to be sure" # $ß / ß /
you understand what's going on. The steps are the same as for the usual Gram Schmidt
process in ‘8Þ

We start with the first basis vector .  But  is  a unit vector in because@ œ " @ G" " not
ll@ ll œ ll"ll œ " † " .B œ # Þ"

# #
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1
1  So we normalize and use
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ll @ ll ll"ll
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#
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For in turn we use the Gram Schmidt formula, normalizing at each4 œ #ß ÞÞÞß '
step to get a unit vector:
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Then /$
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  Notice that each integration requires no calculus harder than . B .B8

  But already the constants are becoming a headache.
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Continuing in this way gives:
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Then  are orthogonal polynomials of degree  we use them as our orthogonal basis/ ß ÞÞÞß / Ÿ &à" '

for With them, we can use the projection formula to compute[Þ

 Proj sin sin , sin , sin;ÐBÑ œ B œ  B /  /   B /  /  ÞÞÞ   Bß /  /
[ " " # # ' '

œ Ð Ð BÑ .BÑ  Ð Ð BÑ/ .BÑ/  ÞÞÞ  Ð Ð BÑ/ .BÑ/  
  # # ' '1 1 1

1 1 1sin sin sin/ /" "

œ Ð Ð BÑ .BÑ  Ð Ð BÑ .BÑ † 
 1 1
1 1sin sin" "

# # 1 1

  ' B ' B

# #1 1 1 1

  sin Ð Ð BÑ .BÑ †
1
1 " "
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 ) %& ÐB  Ñ ) %& ÐB  Ñ# # # #" "

$ $

& &
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    ÞÞÞ  three more terms corresponding to  and / ß / ß /% & '

 Notice that the integrations involved are now more challenging because they(
 involve terms like sin  .  But they are manageable, with enough patience, B B .B8

 using integration by parts.)



When all the smoke clears, Matlab gives 

   ;ÐBÑ œ Ð$$  $%'&  $"")&ÑB  Ð$(&!  $!  $%'&! ÑB#"
)

% # & % ' # $
1"!

 1 1 1 1 1

 Ð&  ('&  (%#& ÑBÑ1 1 1) ' %  (*)

If we convert the  coefficients in (*) to  decimal coefficients we haveexact approximate
 
 ;ÐBÑ ¸ B  B  B!Þ*)()'#"$&&(%'( !Þ"&&#("%"!'$$%$ !Þ!!&'%$""(*('$&$ &

In the sense of the distance  that we defined in ,  is the closest polynomial with degreell ll G ;
Ÿ & to the function sin.  (Remember from the definition of  all this is happening over theG À

interval Ò  ß ÓÞ1 1 )
   

For comparison:  there is a 5 degree polynomial approximation for sin  that is betterth B
known namely, t   he 5 degree Taylor polynomialth ,
  

 .X ÐBÑ œ 0Ð!Ñ  0 Ð!ÑB  B  ÞÞÞ  B&
w # &0 Ð!Ñ 0 ÐBÑ

#x &x

ww Ð@Ñ

 For sin this gives0ÐBÑ œ Bß

   sin B ¸ X ÐBÑ œ B  &
B B
$x &x

$ &

 With approximate decimal coefficients,

  X ÐBÑ œ B  !Þ"''''''''''''(B  !Þ!!)$$$$$$$$$$$B&
$ &

Because  is constructed using derivatives of  X ÐBÑ 0& at 0, it turns to be the better approximation
for sin , but it produces a larger and larger error as  gets further and further from .B B !near !

We can see this in the figure on the next page.



The figure below shows the graphs of sin ,  and  on the interval B X ÐBÑ ;ÐBÑ Ò  ß ÓÞ& 1 1

Across the whole interval the graphs of sin  and  are so close that they visuallyÒ  ß Ó À B ;ÐBÑ1 1
coincide at the scale of this graph: you can see the difference between them.  Near , you also!
can't see the difference between  and sin , but that difference becomes clear in the pictureX ÐBÑ B&

as you move further from  and closer to the endpoints ! „ Þ1

The table on the following page illustrates three things (the third is not clear from the graphs
above):

 i) As we move away from  toward , the approximation to sin  using  is not as! „ B X ÐBÑ1 &

good as the  approximation;ÐBÑ

 ii) Linear algebra gives us the  approximation.  It has the advantage that it gives us a;ÐBÑ
good approximation for sin   B Ò  ß ÓÞover the whole interval 1 1

 iii) The Taylor polynomial  is actually a X ÐBÑ& better approximation than to sin;ÐBÑ B
when  is near   (B ! in some sense, the best of all 5  degree polynomials toX ÐBÑ&  is actually th

approximate sin   B !near ).



 All table values are rounded to 4 significant digits
so, for example, 0.0000 is not exactly !

     Error    Errorl l œ l l œ
          sin   sin     sin  B B X ÐBÑ ;ÐBÑ l B  X ÐBÑ l l B  ;ÐBÑ l& &

   -3.1416   -0.0000   -0.5240   -0.0160    0.5240    .0160 Ã Ã ; large smallishX !&

   -2.9416   -0.1987   -0.5347   -0.1966    0.3361    0.0021 Ã Ã |error| |error|
   -2.7416   -0.3894   -0.5979   -0.3827    0.2084    0.0067 Ã  Ã near over1
   -2.5416   -0.5646   -0.6891   -0.5600    0.1244       0.0047 ã Ã the whole
   -2.3416   -0.7174   -0.7884   -0.7169    0.0710       0.0005 Ã interval
   -2.1416   -0.8415   -0.8800   -0.8447    0.0385       0.0032          ã
   -1.9416   -0.9320   -0.9516   -0.9372    0.0196       0.0052
   -1.7416   -0.9854   -0.9947   -0.9906    0.0092       0.0052 Î
   -1.5416   -0.9996   -1.0035   -1.0032    0.0040       0.0036
   -1.3416   -0.9738   -0.9754   -0.9749    0.0015       0.0011
   -1.1416   -0.9093   -0.9098   -0.9077    0.0005       0.0016
   -0.9416   -0.8085   -0.8086   -0.8047    0.0001       0.0038
   -0.5416   -0.5155   -0.5155   -0.5106    0.0000       0.0049Ã Ãvery but |error|
   -0.3416   -0.3350   -0.3350   -0.3313    0.0000      0.0037Ã Ã ;small for 
   -0.1416   -0.1411   -0.1411   -0.1394    0.0000      0.0017Ã l l Ã !error near 
   0.0584    0.0584    0.0584    0.0577    0.0000    0.0007Ã ! Ãnear is larger
    0.2584    0.2555    0.2555    0.2526    0.0000   0.0029Ã using than for theÃ
   0.4584    0.4425    0.4425    0.4380    0.0000     0.0045Ã X Ã& &T
    0.6584    0.6119    0.6119    0.6068    0.0000    0.0051 Ã Ãapprox approx
   0.8584    0.7568    0.7569    0.7524    0.0001     0.0044   ã ã
   1.0584    0.8716    0.8719    0.8690    0.0003       0.0026
   1.2584    0.9516    0.9526    0.9515    0.0010       0.0001

1.4584    0.9937    0.9964    0.9963    0.0027       0.0026  
    1.6584    0.9962    1.0028    1.0009    0.0066       0.0047
    1.8584    0.9589    0.9734    0.9644    0.0145       0.0054 Î
    2.0584    0.8835    0.9128    0.8877    0.0293       0.0043
    2.2584    0.7728    0.8282    0.7740    0.0554       0.0012
    2.4584    0.6313    0.7304    0.6283    0.0991       0.0030 Ã ; smallish
    2.6584    0.4646    0.6336    0.4583    0.1690       0.0063ã Ã  |error|
    2.8584    0.2794    0.5561    0.2742    0.2767     0.0052 Ã X large over& Ã
    3.0584    0.0831    0.5204    0.0894    0.4373     0.0063 Ã Ã |error| the whole

3.1416 9.0000 0.5240 0.0160 0.5240      0.0160 Ã Ã near interval1
  



One more example, without many details

We are still working in the vector space  of continuous functions on theG
interval .Ò  ß Ó1 1

Pink an  and consider the subspace8

 Span sin sin  sin cos cos[ œ Ö"ß Bß #Bß ÞÞÞß 8Bß Bß ÞÞÞß 8B×

A function in  is a linear combination of the basis elements:[

       (*)Ð‡Ñ +  + B ÞÞÞ  + 8B , B ÞÞÞ  , 8B! " 8 " 8cos cos sin sin

You can check that these functions form an  for orthogonal basis [ À

 For example, to show  sin cos#B ¼ $B À

 sin cos sin cos #Bß $B  œ Ð #BÑÐ $BÑ .B
1

1

 
 Since  sin       sin  cos cos sinÐ  Ñ œ α " α " α "
 and sin       sin  cos cos sinÐ  Ñ œ α " α " α "
 then sin sin  sin cosÐ  Ñ  Ð  Ñ œ #α " α " α "

 If we let  and weα "œ #B œ $Bß

  sin sin   sin cosÐ&BÑ  Ð  BÑ œ # Ð#BÑ Ð$BÑ
 so sin sin   sin cos"

# Ð Ð&BÑ  ÐBÑ Ñ œ Ð#BÑ Ð$BÑ

 Therefore sin sin 
 

"
#1 1

1 1
Ð #BÑÐ $BÑ .B œsin cos Ð&BÑ  ÐBÑ .B

  cos cosœ Ð  &B  B.B Ñl œ !" "
# & 1

1

If  is any function in , we can compute proj the function in closest to ,0 G 0 œ 0 œ [ 0s
[

0 Ð‡Ñs is a function that looks like 

 cos cosœ œ "  B  ÞÞÞ  8Bs
0ÐBÑß" 0ÐBÑß B 0ÐBÑß 8B
"ß"  Bß B  8Bß 8B

cos cos
cos cos cos cos

  sin sin B  ÞÞÞ  8B0ÐBÑß B 0ÐBÑß 8 B
 Bß B  8Bß 8B

sin sin
sin sin sin sin

 For the denominators, we can calculate

   "ß "  œ " † " .B œ #
1

1
1

  cos cos > cos  ( ) 5Bß 5B œ 5B .B œ


#
1

1
1 why?

  sin sin > sin   ( ) 5Bß 5B œ 5B .B œ


#
1

1
1 why?



Therefore proj[ 0 œ 0s

 œ Ð 0ÐBÑ † " .BÑ "" "
# 1 1

1
  
 cos cos cos cos Ð 0ÐBÑ † B .BÑ B  ÞÞÞ  Ð 0ÐBÑ † 8B .BÑ 8B" "

 1 11 1
1 1 

 sin sin sin sin Ð 0ÐBÑ † B .BÑ B  ÞÞÞ  Ð 0ÐBÑ † 8B .BÑ 8B" "
 1 11 1
1 1 

  cos cos sin sinœ  + B  ÞÞÞ  + 8B  , B  ÞÞÞ  , 8B+
# " 8 " 8
!

So  proj[ 0 œ 0s œ  + 5B  5B+
#

5œ" 5œ"

8 8

5
!  cos sin     (*)

  where + œ!
"

1 1

1 0ÐBÑ † " .B

  and  
cos for 

sin for  + œ Ð 0ÐBÑ † 5B .BÑ "  5 Ÿ 8

, œ Ð 0ÐBÑ † 8B .BÑ "  5 Ÿ 8

5
"



5
"



1 1

1

1 1

1

The coefficients used in writing  proj[ 0  are called the Fourier coefficients of 0

and the “trigonometric series” (*) is the  Fourier approximation for .8 0th

If  then proj , that is, the approximation error as measured by8 Ä ∞ß ll 0  0 ll Ä ! Ä ! Ð[

our distance function proj  This is called “mean square convergence.”ll 0  0 ll Þ Ð Ñ[

“Mean square convergence” is  the same as saying:not

     for each B − Ò  ß Óß1 1 0ÐBÑ Ä 0ÐBÑs    ( )this is called pointwise convergence
     It's a much harder problem to determine for which 's this is true.B

     Pointwise convergence is true, , at any point  where  isfor example B 0
     differentiable.


