Inner Product Spaces

In \mathbb{R}^{n}, we defined an inner product $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=u_{1} v_{1}+\ldots+u_{n} v_{n}$. Another notation sometimes used is $\boldsymbol{u} \cdot \boldsymbol{v}=\langle\boldsymbol{u}, \boldsymbol{v}\rangle$.

The inner product in \mathbb{R}^{n} has several important properties (see Theorem 1, p. 331) that we have used over and over. Written with the $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ notation, they are
a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=<\boldsymbol{v}, \boldsymbol{u}\rangle$
b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{u}, \boldsymbol{w}\rangle+\langle\boldsymbol{v}, \boldsymbol{w}\rangle$
c) $\langle c \boldsymbol{u}, \boldsymbol{v}\rangle=c\langle\boldsymbol{u}, \boldsymbol{v}\rangle$
d) $\langle\boldsymbol{u}, \boldsymbol{u}\rangle \geq 0$ and $<\boldsymbol{u}, \boldsymbol{u}\rangle=0$ if and only if $\boldsymbol{u}=\mathbf{0}$.

Using the inner product, we then defined length $\|\boldsymbol{u}\|=\langle\boldsymbol{u}, \boldsymbol{u}\rangle^{1 / 2}$ and distance between two vectors: $\|\boldsymbol{u}-\boldsymbol{v}\|=\langle\boldsymbol{u}-\boldsymbol{v}, \boldsymbol{u}-\boldsymbol{v}\rangle^{1 / 2}$. Finally we discussed the angle between vectors and defined orthogonality $(\boldsymbol{u} \perp \boldsymbol{v})$ by $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0$.

Earlier in the course, we took the essential properties of vectors in \mathbb{R}^{n} for a starting point to define more general vector spaces $V(p .190)$. In the same spirit, we now use the essential properties a)-d) of the inner product in \mathbb{R}^{n} as a guide for inner products in any vector space V. For a vector space V with real scalars, an inner product is a rule $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ that produces a scalar for every pair of vectors $\boldsymbol{u}, \boldsymbol{v}$ in V in a way that a) -d) are true. We call such a rule an inner product because it acts like an inner product (in \mathbb{R}^{n}). (Properties a)-d) are modified slightly when complex scalars are allowed.) A vector space V with an inner product defined is called an inner product space. Because any inner product "acts just like" the inner product from \mathbb{R}^{n}, many of the theorems we proved about inner products for \mathbb{R}^{n} are also true in any inner product space. You can look at an introduction to this material in Section 6.7 of the textbook.

Here is a little more detail using one specific example, $C[-\pi, \pi]=$ the vector space of all continuous real-valued functions defined on the interval $[-\pi, \pi]$. We'll call this vector space C for short.

Everything hereafter in these notes is happening in C.
For vectors (functions) f, g in C, define an inner product by

$$
<f, g>=\int_{-\pi}^{\pi} f(x) g(x) d x \quad \text { (a scalar!) }
$$

A purely heuristic comment: in Calculus I this integral is defined (roughly) as follows:

- divide $[-\pi, \pi]$ into subintervals of length $\frac{1}{n}$ and pick a point x_{i} in each subinterval
- form a "Riemann sum" $\sum f\left(x_{i}\right) g\left(x_{i}\right) \frac{1}{n}=\frac{1}{n} \sum f\left(x_{i}\right) g\left(x_{i}\right)$
- let $n \rightarrow \infty$: the integral is the limit of the Riemann sums

The Riemann sum $\sum f\left(x_{i}\right) g\left(x_{i}\right)$ resembles the definition for the dot product in \mathbb{R}^{n} : if you imagine $f\left(x_{i}\right)$ and $g\left(x_{i}\right)$ as "the x_{i} coordinatesfor the "vectors" f and g, then $\sum f\left(x_{i}\right) g\left(x_{i}\right)$ is analogous to an inner product in \mathbb{R}^{n} : "add up the product of coordinates from f and g."

Notice that $\langle f, g\rangle$ does satisfy a)-d): that is, $\langle f, g\rangle$ behaves like the inner product in \mathbb{R}^{n} :
a) $\langle f, g\rangle=<g, f\rangle$
because $\int_{-\pi}^{\pi} f(x) g(x) d x=\int_{-\pi}^{\pi} g(x) f(x) d x$
b) $\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle$ because $\int_{-\pi}^{\pi}(f(x)+g(x)) h(x) d x=\int_{-\pi}^{\pi} f(x) h(x) d x+\int_{-\pi}^{\pi} g(x) h(x) d x$
c) $\langle\mathrm{c} f, g>=c<f, g>$
because \qquad
d) $\langle f, f\rangle \geq 0$ because $\int_{-\pi}^{\pi} f^{2}(x) d x \geq 0$. And $\langle f, f\rangle=0$ if and only if $f=\mathbf{0}(=$ the constant function $\mathbf{0})$ You should try to convince yourself about d). Checking it needs the fact that function f in C are continuous. Why?

Using this new inner product, we make definitions in C parallel to definitions in \mathbb{R}^{n} :
Define the norm of f by $\|f\|=<f, f>^{1 / 2}=\left(\int_{-\pi}^{\pi} f^{2}(x) d x\right)^{1 / 2}$
Define the distance between f and g as $\|f-g\|=\left(\int_{-\pi}^{\pi}(f(x)-g(x))^{2} d x\right)^{1 / 2}$
There are certainly other ways to define "distance" between two functions f and g. This way is called the mean square distance between f and g. It's popular with mathematicians and statisticians because it resembles the definition of distance in \mathbb{R}^{n} as a "square root of a sum of squares" - where "sum" is replaced by "integral." Moreover, $\|f-g\|$ behaves nicely, with properties similar to ordinary distance in \mathbb{R}^{n}.

Notice that because of the squaring in the formula, "large differences" $|f(x)-g(x)|$ have more influence than "small differences" in calculating the distance $\|f-g\|$.

We say f and g are orthogonal if $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x=0$
For example: sin and \cos are orthogonal on $[-\pi, \pi]$ because

$$
\begin{aligned}
& <\sin , \cos >=\int_{-\pi}^{\pi}(\sin x)(\cos x) d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi} \sin (2 x) d x=-\left.\frac{1}{2} \cos (2 x)\right|_{-\pi} ^{\pi}=0
\end{aligned}
$$

Most of the tools we developed using inner products in \mathbb{R}^{n} still work. For example:
For a subspace W of C : we define $W^{\perp}=\{f:<f, g>=0$ for all g in $W\}$
Orthogonal Decomposition Theorem: Suppose $f \in C$ and that W is a subspace of C with an orthogonal basis $\left\{g_{1}, \ldots, g_{n}\right\}$. Then we can write $f=\widehat{f}+g$ where $\widehat{f} \in W$ and $g \in W^{\perp}$, and \widehat{f} and g are unique.
\widehat{f} is called the projection of f on W, also denoted $\operatorname{proj}_{W} f$, and

$$
\widehat{f}=\frac{\left\langle f, g_{1}\right\rangle}{\left\langle g_{1}, g_{1}\right\rangle} g_{1}+\ldots+\frac{\left\langle f, g_{n}\right\rangle}{\left\langle g_{n}, g_{n}\right\rangle} g_{n}
$$

\widehat{f} is the function in W closest to f, meaning that

$$
\|f-\widehat{f}\|<\|f-g\| \text { for all } g \text { in } W, g \neq \widehat{f}
$$

If $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a basis for a subspace W of C, we can convert the basis into an orthogonal basis $\left\{g_{1}, \ldots, g_{n}\right\}$ using the same Gram Schmidt formulas as in \mathbb{R}^{n}.

Note: Unlike \mathbb{R}^{n}, C is infinite dimensional but that doesn't matter for the results we just listed. What does matter is that the subspace W is finite dimensional: W has a finite (orthogonal) basis $\left\{g_{1}, \ldots, g_{n}\right\}$.

Some approximations in C : three examples

Example 1 Consider the subspace of C :

$$
W=\operatorname{Span}\{1, \cos x, \cos 2 x, \ldots, \cos n x, \sin x, \sin 2 x, \ldots, \sin n x\}
$$

Functions g in W are the linear combinations of the functions that span W; these are sometimes called trigonometric polynomials:

$$
\text { (*) } \begin{align*}
g(x) & =c_{0}+a_{1} \cos x+\ldots+a_{n} \cos n x+b_{1} \sin x+\ldots+b_{n} \sin n x \tag{*}\\
& =c_{0}+\sum_{k=1}^{n} a_{k} \cos k x+\sum_{k=1}^{n} b_{k} \sin k x
\end{align*}
$$

$\operatorname{proj}_{W} f$ is one such function: it is $\underline{\text { in }} \underline{W}$ and it is the best approximation to f from W - meaning that if g is in W, then the distance $\|f-g\|$ is smallest possible when $g=\operatorname{proj}_{W} f$.

Finding $\operatorname{proj}_{W} f$ is relatively easy because the functions $1, \sin x, \sin 2 x, \ldots, \sin n x, \cos x$, $\cos 2 x, \ldots, \cos n x$ form an orthogonal basis for W. However, we should check that fact. Doing so involves some integrations that use some trig identities:

$$
\begin{aligned}
& \sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
& \cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)] \\
& \sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
& \cos ^{2} A=\frac{1+\cos 2 A}{2} \\
& \sin ^{2} A=\frac{1-\cos 2 A}{2}
\end{aligned}
$$

- 1 is orthogonal to any of the other functions $\cos k x$ to $\sin k x$:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} 1 \cdot \cos (k x) d x=\left.\frac{1}{k} \sin (k x)\right|_{-\pi} ^{\pi}=0 \\
& \int_{-\pi}^{\pi} 1 \cdot \sin (k x) d x=-\left.\frac{1}{k} \cos (k x)\right|_{-\pi} ^{\pi}=0
\end{aligned}
$$

- $\sin k x$ and $\cos k x$ are orthogonal:

$$
\int_{-\pi}^{\pi} \sin (k x) \cos (k x) d x=\left.\frac{\sin ^{2}(k x)}{2 k}\right|_{-\pi} ^{\pi}=0
$$

- finally, for $k \neq m$

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin (m x) \sin (k x) d x & =\int_{-\pi}^{\pi} \frac{1}{2}[\cos (m-k) x-\cos (m+k) x] d x \\
& =\left.\left(\frac{\sin (m-k) x}{2(m-k)}-\frac{\sin (m+k) x}{2(m+k)}\right)\right|_{-\pi} ^{\pi}=0 \\
\int_{-\pi}^{\pi} \cos (m x) \cos (k x) d x & =\int_{-\pi}^{\pi} \frac{1}{2}[\cos (m-k) x+\cos (m+k) x] d x \\
& =\left.\left(\frac{\sin (m-k) x}{2(m-k)}+\frac{\sin (m+k) x}{2(m+k)}\right)\right|_{-\pi} ^{\pi}=0 \\
& =\left.\left(-\frac{\cos (m-k) x}{2(m-k)}-\frac{\cos (m+k) x}{2(m+k)}\right)\right|_{-\pi} ^{\pi}=0
\end{aligned}
$$

We can also compute two other integrals that we will need:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \cos ^{2} k x \cos k x d x=\int_{-\pi}^{\pi} \frac{1+\cos 2 k x}{2} d x=\left.\left(\frac{x}{2}+\frac{\sin 2 k x}{4 k}\right)\right|_{-i} ^{\pi}=\pi \\
& \int_{-\pi}^{\pi} \sin ^{2} k x \cos k x d x=\int_{-\pi}^{\pi} \frac{1-\cos 2 k x}{2} d x=\left.\left(\frac{x}{2}-\frac{\sin 2 k x}{4 k}\right)\right|_{-i} ^{\pi}=\pi
\end{aligned}
$$

Notation Alert: If f is any function in C, we can compute $\operatorname{proj}_{W} f=$ the function in W closest to f. As you might recognize, these calculations are closely related to a topic called Fourier analysis. In Fourier analysis, some functions f have what's called a "Fourier transform," denoted by \widehat{f}. This is something very different from $\widehat{f}=\operatorname{proj}_{W} f$; so in this example we will use only the notation proj$j_{w} f$ instead of \widehat{f} to avoid possible confusion with the Fourier transform by those who know something about it.)
$\operatorname{proj}_{W} f$ is a function that looks like $\left(^{*}\right)$. We can use the projection formula to determine its coefficients.
$\operatorname{proj}_{W} f=\frac{\langle f(x), 1\rangle}{\langle 1,1\rangle} 1+\frac{\langle f(x), \cos x\rangle}{\langle\cos x, \cos x\rangle} \cos x+\ldots+\frac{\langle f(x), \cos n x\rangle}{\langle\cos n x, \cos n x\rangle} \cos n x$

$$
+\frac{\langle f(x), \sin x\rangle}{\langle\sin x, \sin x\rangle} \sin x+\ldots+\frac{\langle f(x), \sin n x\rangle}{\langle\sin n x, \sin n x\rangle} \sin n x
$$

The denominators don't depend on f :

$$
\begin{array}{ll}
<1,1>=\int_{-\pi}^{\pi} 1 \cdot 1 d x=2 \pi & \\
<\cos k x, \cos k x>=\int_{-\pi}^{\pi} \cos ^{2} k x d x=\pi & \text { (see calculation above) } \\
<\sin k x, \sin k x>=\int_{-\pi}^{\pi} \sin ^{2} k x d x=\pi & \text { (see calculation above) }
\end{array}
$$

So $\operatorname{proj}_{W} f=\frac{1}{2 \pi}<f(x), 1>1+\frac{1}{\pi}<f(x), \cos x>+\ldots+\frac{1}{\pi}<f(x), \cos n x>$

$$
+\frac{1}{\pi}<f(x), \sin x>+\ldots+\frac{1}{\pi}<f(x), \sin n x>
$$

$$
\begin{aligned}
=\frac{1}{2}\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot 1 d x\right) 1 & +\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \cos x d x\right) \cos x+\ldots+\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \cos n x d x\right) \cos n x \\
& +\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \sin x d x\right) \sin x+\ldots+\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \sin n x d x\right) \sin n x
\end{aligned}
$$

so

$$
\begin{equation*}
\operatorname{proj}_{W} f=\quad \frac{a_{0}}{2} \quad+\sum_{k=1}^{n} a_{k} \cos k x \quad+\sum_{k=1}^{n} b_{k} \sin k x \tag{**}
\end{equation*}
$$

where

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot 1 d x
$$

$$
\text { and } \quad \begin{cases}a_{k}=\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \cos k x d x\right) & \text { for } 1 \leq k \leq n \\ b_{k}=\frac{1}{\pi}\left(\int_{-\pi}^{\pi} f(x) \cdot \sin n x d x\right) & \text { for } 1 \leq k \leq n\end{cases}
$$

The coefficients a_{k} and b_{k} used here to write $\operatorname{proj}_{W} f$ are called the Fourier coefficients of f and the "trigonometric series" $\left({ }^{* *}\right)$ is the $n^{\text {th }}$ Fourier approximation for f.

Fact: If $n \rightarrow \infty$, then the approximation error (as measured by our distance function) $\left.\left\|f-\operatorname{proj}_{W} f\right\|\right) \rightarrow 0$. This is called mean square convergence.

Mean square convergence is not equivalent to saying:

$$
\text { for each } x \in[-\pi, \pi], \quad \lim _{n \rightarrow \infty} \operatorname{proj}_{W} f(x) \rightarrow f(x) \quad \text { (this is called pointwise convergence) }
$$

It's a much harder problem to characterize for which f 's and x 's this is true.

Concrete Example: Find the $n^{\text {th }}$ Fourier approximation for $f(x)=x$ on the interval $[-\pi, \pi]$ and compare the graphs.

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \cdot 1 d x=0 \\
& a_{k}=\frac{1}{\pi}\left(\int_{-\pi}^{\pi} x \cos k x d x=0\right. \\
& \begin{array}{l}
\text { because } x \cos (k x) \text { is an odd function } \\
\text { (for an odd function over }[-\pi, \pi] \text { the"positive" and } \\
\text { "negative" areas between the graph and the } x \text {-axis } \\
\text { cancel out) }
\end{array} \\
& b_{k}=\frac{1}{\pi}\left(\int_{-\pi}^{\pi} x \cdot \sin k x d x\right)=\left.\frac{1}{\pi}\left(-x \frac{\cos k x}{k}+\frac{\sin k x}{k^{2}}\right)\right|_{-\pi} ^{\pi}=\frac{1}{\pi}\left[-\pi \frac{(-1)^{k}}{k}-\left(\pi \frac{(-1)^{k}}{k}\right)\right] \\
& \\
& \uparrow \begin{array}{l}
\text { integration by parts }
\end{array} \\
& =\frac{-2(-1)^{k}}{k}=\frac{2(-1)^{k+1}}{k}
\end{aligned}
$$

So for $f(x)=x$ on $[-\pi, \pi]$, we get the approximation

$$
\begin{aligned}
x \approx b_{1} \sin x+\ldots+b_{n} \sin n x & =2 \sin x-1 \sin 2 x+\frac{2}{3} \sin 3 x+\ldots+\frac{2(-1)^{n+1}}{n} \sin n x \\
& =2\left(\sin x-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\ldots+(-1)^{n+1} \frac{\sin n x}{n}\right)
\end{aligned}
$$

Here are three graphs for comparison, using $n=1,3$, and 10 :
Notice (not clear in the pictures) that every Fourier approximation

$$
2\left(\sin x-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\ldots+(-1)^{n+1} \frac{\sin n x}{x}\right)
$$

has value 0 at the endpoints $\pm \pi$, but the function $f(x)=x$ is not 0 at the endpoints: at π and $-\pi$, the value of Fourier polynomials do have a limit, 0 , but $0 \neq f(\pi)=f(-\pi)$.

Example 2 We are still working in $C=C[-\pi, \pi]$. Let W be the subspace of C containing the polynomials of degree ≤ 5 :

$$
W=\operatorname{Span}\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\}
$$

Find the polynomial in W closest to the function sin. MATLAB will handle the details for us.
The polynomial we want is $q=\operatorname{proj}_{W} \sin ; q$ is the "best approximation from W " to the function sin, meaning that the approximation error

$$
\begin{aligned}
& \|q-\sin \|=\left(\int_{-\pi}^{\pi}|q(x)-\sin x|^{2} d x\right)^{1 / 2} \quad \text { is smaller than } \\
& \|p-\sin \|=\left(\int_{-\pi}^{\pi}|p(x)-\sin x|^{2} d x\right)^{1 / 2} \text { for any } p \in W, p \neq q
\end{aligned}
$$

It's easy to compute $\operatorname{proj}_{W} \sin$ if we have orthonormal basis for W, so we convert
the standard basis for W into an orthonormal basis that we'll call

$$
\begin{aligned}
& \left\{v_{1}, v_{2}, \ldots, v_{6}\right\}=\left\{1, x, x^{2}, \ldots, x^{5}\right\} \\
& \left\{e_{1}, e_{2}, e_{3}, \ldots, e_{6}\right\}
\end{aligned}
$$

using the Gram-Schmidt Process. Since MATLAB is going to do the work, we will normalize at each step in the process. (For hand calculations, the arithmetic would be simpler to just use Gram Schmidt to get an orthogonal basis and after Gram Schmidt is completed, then normalize each of those vectors.)

Note: the integrations below were done using MATLAB. Notice that every integration used to find the e_{i} 's is very easy, but that the constants that arise are messy and pile up fast; they can easily lead to errors when the computation is done by hand. Try to compute at least e_{1}, e_{2}, e_{3} for yourself (with or without computer assistance) to be sure you understand what's going on. The steps are the same as for the usual Gram Schmidt process in \mathbb{R}^{n}.

We start the process with $v_{1}=1$. But v_{1} is not a unit vector in C because $\left\|v_{1}\right\|^{2}=\|1\|^{2}$ $=\int_{-\pi}^{\pi} 1 \cdot 1 d x=2 \pi$. So we normalize and let

$$
e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\|1\|}=\frac{1}{\sqrt{2 \pi}}
$$

For $j=2, \ldots, 6$ in turn we use the Gram Schmidt formula, normalizing at each step to get a unit vector:

$$
\begin{aligned}
e_{j} & =\frac{v_{j}-<v_{j}, e_{1}>e_{1}-<v_{j}, e_{2}>e_{2}-\ldots-<v_{j}, e_{j-1}>e_{j-1}}{\left\|v_{j}-<v_{j}, e_{1}>e_{1}-<v_{j}, e_{2}>e_{2}-\ldots-<v_{j}, e_{j-1}>e_{j-1}\right\|} \\
e_{2} & =\frac{v_{2}-<v_{2}, e_{1}>e_{1}}{\left\|v_{2}-<v_{2}, e_{1}>e_{1}\right\|}=\frac{x-\left(\int_{-\pi}^{\pi} x \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi}}}{\| x-\left(\int_{-\pi}^{\pi} x \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi} \|}} \\
& =\frac{x}{\|x\|} \quad\left(\text { since } \int_{-\pi}^{\pi} x d x=0\right) \\
& =\frac{x}{\left(\int_{-\pi}^{\pi} x \cdot x d x\right)^{1 / 2}}=\frac{x}{\frac{1}{3} \pi(6 \pi)^{1 / 2}}=\frac{\sqrt{6} x}{2 \pi \sqrt{\pi}}
\end{aligned}
$$

Then

$$
\begin{aligned}
e_{3} & =\frac{v_{3}-<v_{3}, e_{1}>e_{1}-<v_{3}, e_{2}>e_{2}}{\left\|v_{3}-<v_{3}, e_{1}>e_{1}-<v_{3}, e_{2}>e_{2}\right\|}=\frac{x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{1} d x\right) e_{1}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{2} d x\right) e_{2}}{\left\|x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{1} d x\right) e_{1}-\left(\int_{-\pi}^{\pi} x^{2} \cdot e_{2} d x\right) e_{2}\right\|} \\
& =\frac{x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi}}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}} d x\right) \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}}}{\left\|x^{2}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{1}{\sqrt{2 \pi}} d x\right) \cdot \frac{1}{\sqrt{2 \pi}}-\left(\int_{-\pi}^{\pi} x^{2} \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}} d x\right) \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}}\right\|}
\end{aligned}
$$

Notice that each integration requires no calculus harder than $\int x^{n} d x$.
But already the constants are becoming a headache.

$$
=\quad \ldots \quad=\frac{1}{8} \frac{\sqrt{8} \sqrt{45}\left(x^{2}-\frac{1}{3} \pi^{2}\right)}{\sqrt{\pi^{5}}}
$$

Continuing in this way gives:

$$
\begin{aligned}
& e_{4}=\ldots=\frac{1}{8} \frac{\sqrt{175} \sqrt{8}\left(x^{3}-\frac{3}{5} \pi^{2} x\right)}{\sqrt{\pi^{7}}} \\
& e_{5}=\quad \ldots=\frac{1}{128} \frac{\sqrt{11025} \sqrt{128}\left(x^{4}-\frac{1}{5} \pi^{4}-\frac{6}{7} \pi^{2}\left(x^{2}-\frac{1}{3} \pi^{2}\right)\right)}{\sqrt{\pi^{9}}}, \text { and finally } \\
& e_{6}=\quad \ldots=\frac{1}{128} \frac{\sqrt{128} \sqrt{43659}\left(x^{5}-\frac{3}{7} \pi^{4} x-\frac{10}{9} \pi^{2}\left(x^{3}-\frac{3}{5} \pi^{2} x\right)\right)}{\sqrt{\pi^{11}}}
\end{aligned}
$$

Then e_{1}, \ldots, e_{6} form an orthonormal basis for W. With them, we can use the projection formula to compute

$$
\begin{aligned}
& q(x)=\operatorname{proj}_{W} \sin x=<\sin x, e_{1}>e_{1}+<\sin x, e_{2}>e_{2}+\ldots+<\sin x, e_{6}>e_{6} \\
&=\left(\int_{-\pi}^{\pi}(\sin x) e_{1} d x\right) e_{1}+\left(\int_{-\pi}^{\pi}(\sin x) e_{2} d x\right) e_{2}+\ldots+\left(\int_{-\pi}^{\pi}(\sin x) e_{6} d x\right) e_{6} \\
&=\left(\int_{-\pi}^{\pi}(\sin x) \frac{1}{\sqrt{2 \pi}} d x\right) \frac{1}{\sqrt{2 \pi}}+\left(\int_{-\pi}^{\pi}(\sin x) \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}} d x\right) \cdot \frac{\sqrt{6} x}{2 \pi \sqrt{\pi}} \\
& \quad+\left(\int_{-\pi}^{\pi}(\sin x) \frac{1}{8} \frac{\sqrt{8} \sqrt{45}\left(x^{2}-\frac{1}{3} \pi^{2}\right)}{\sqrt{\pi^{5}}} d x\right) \cdot \frac{1}{8} \frac{\sqrt{8} \sqrt{45}\left(x^{2}-\frac{1}{3} \pi^{2}\right)}{\sqrt{\pi^{5}}} \\
& \quad+\ldots \quad+\underline{\text { three more integral terms corresponding to } e_{4}, e_{5}, \text { and } e_{6}}
\end{aligned}
$$

(Notice that the integrations needed are now a bit more challenging because they involve terms like $\int x^{n} \sin x d x$. But they are manageable, with enough patience, using integration by parts.)

When all the smoke clears and terms are combined, MATLAB has produced

$$
\begin{align*}
q(x)=\frac{21}{8 \pi^{10}}\left(\left(5 \pi^{8}-765 \pi^{6}+7425 \pi^{4}\right) x+(3750\right. & \left.\pi^{4}-30 \pi^{6}-34650 \pi^{2}\right) x^{3} \\
& \left.+\left(33 \pi^{4}-3465 \pi^{2}+31185\right) x^{5}\right) \tag{***}
\end{align*}
$$

If we convert the exact coefficients in (*) to approximate decimal coefficients we have

$$
q(x) \approx 0.98786213557467 x-0.15527141063343 x^{3}+0.00564311797635 x^{5} \quad(* * *)
$$

Remember that everything in these examples is happening on the interval $[-\pi, \pi]$: on that interval, the polynomial q is the "best fit to the function sin" from among the polynomials in W (the polynomials with degree ≤ 5). Best fit means that
if p is any polynomial with degree $\leq 5, p \neq q$.

$$
\|q-\sin \|=\left(\int_{-\pi}^{\pi}(q(x)-\sin x)^{2} d x\right)^{1 / 2}<\left(\int_{-\pi}^{\pi}(p(x)-\sin x)^{2} d x\right)^{1 / 2}=\|p-\sin \|
$$

Example 3 For comparison with $q(x)$, here is a $5^{\text {th }}$ degree polynomial approximation for $\sin x$ that you should already know from Calculus II: the $5 \underline{\underline{\text { th }}}$ degree Taylor polynomial,

$$
T_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(v)}(x)}{5!} x^{5}
$$

For $f(x)=\sin x$, this gives

$$
\sin x \approx T_{5}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

With approximate decimal coefficients,

$$
\begin{array}{cc}
T_{5}(x)=x-0.16666666666667 x^{3}+0.00833333333333 x^{5} & \begin{array}{c}
\text { compare coefficients } \\
\text { with those in } q(x))
\end{array}
\end{array}
$$

Because $T_{5}(x)$ is constructed using derivatives of f at 0 , it gives a better approximation for $\sin x$ near 0 , but the approximation error gets larger and larger error as x moves further from 0 .

We can see this in the figure on the next page.

The figure below shows the graphs of $\sin x, T_{5}(x)$ and $q(x)$ on the interval $[-\pi, \pi]$.
Across the whole interval $[-\pi, \pi]$: the graphs of $\sin x$ and $q(x)$ are so close that you can't see a difference between them (at the scale of this graph).

Near 0, you also can't see the difference between $T_{5}(x)$ and $\sin x$, but that difference becomes clear in the picture as you move closer to the endpoints $\pm \pi$.

The table on the following page illustrates three things (the third is not clear from the graphs above):
i) As we move away from 0 toward $\pm \pi$, the approximation to $\sin x$ using $T_{5}(x)$ is not as good as the $q(x)$ approximation
ii) Linear algebra gives us the $q(x)$ approximation. It has the advantage that it gives us a good approximation for $\sin x$ over the whole interval $[-\pi, \pi]$.
iii) Near 0 , the Taylor polynomial $T_{5}(x)$ is actually a better approximation than $q(x)$ to $\sin x$ (in some sense, $T_{5}(x)$ is actually the best of all $5^{\text {th }}$ degree polynomial approximations to $\sin x$ near 0).

All table values are rounded to 4 significant digits : for example, 0.0000 is not exactly 0

x	$\sin x$	$T_{5}(x)$	$q(x)$	$\begin{aligned} & \mid \text { Error } \mid= \\ & \left\|\sin x-T_{5}(x)\right\| \end{aligned}$	$\begin{aligned} & \mid \text { Error }{ }^{* * * *}= \\ & \|\sin x-q(x)\| \end{aligned}$	
-3.1416	-0.0000	-0.5240	-0.0160	$0.5240 \leftarrow$ large T_{5}	$0.0160 \leftarrow \operatorname{smallish} q$	
-2.9416	-0.1987	-0.5347	-0.1966	$0.3361 \leftarrow$ lerror	$0.0021 \leftarrow$ lerror	
-2.7416	-0.3894	-0.5979	-0.3827	$0.2084 \leftarrow$ near $-\boldsymbol{\pi}$	$0.0067 \leftarrow$ over	
-2.5416	-0.5646	-0.6891	-0.5600	0.1244	$0.0047 \leftarrow$ the whole	
-2.3416	-0.7174	-0.7884	-0.7169	0.0710	$0.0005 \leftarrow$ interval	
-2.1416	-0.8415	-0.8800	-0.8447	0.0385	0.0032	
-1.9416	-0.9320	-0.9516	-0.9372	0.0196	0.0052	
-1.7416	-0.9854	-0.9947	-0.9906	0.0092 I	0.0052 I	
-1.5416	-0.9996	-1.0035	-1.0032	0.0040	0.0036	
-1.3416	-0.9738	-0.9754	-0.9749	0.0015	0.0011	
-1.1416	-0.9093	-0.9098	-0.9077	0.0005	0.0016	
-0.9416	-0.8085	-0.8086	-0.8047	0.0001	0.0038	
-0.5416	-0.5155	-0.5155	-0.5106	$0.0000 \leftarrow$ very	$0.0049 \leftarrow$ but lerrorl	
-0.3416	-0.3350	-0.3350	-0.3313	$0.0000 \leftarrow$ small	$0.0037 \leftarrow$ for \boldsymbol{q}	
-0.1416	-0.1411	-0.1411	-0.1394	$0.0000 \leftarrow$ \|error		$0.0017 \leftarrow$ near 0 is small
0.0584	0.0584	0.0584	0.0577	$0.0000 \leftarrow$ near 0	$0.0007 \leftarrow$ but larger	
0.2584	0.2555	0.2555	0.2526	$0.0000 \leftarrow$ using	$0.0029 \leftarrow$ than lerrorl	
0.4584	0.4425	0.4425	0.4380	$0.0000 \leftarrow T_{5}$	$0.0045 \leftarrow$ for the \mathbf{T}_{5}	
0.6584	0.6119	0.6119	0.6068	$0.0000 \leftarrow$ approx	$0.0051 \leftarrow$ approx	
0.8584	0.7568	0.7569	0.7524	0.0001	0.0044 :	
1.0584	0.8716	0.8719	0.8690	0.0003	0.0026	
1.2584	0.9516	0.9526	0.9515	0.0010	0.0001	
1.4584	0.9937	0.9964	0.9963	0.0027	0.0026	
1.6584	0.9962	1.0028	1.0009	0.0066	0.0047	
1.8584	0.9589	0.9734	0.9644	0.0145 I	0.0054 I	
2.0584	0.8835	0.9128	0.8877	0.0293	0.0043	
2.2584	0.7728	0.8282	0.7740	0.0554	0.0012	
2.4584	0.6313	0.7304	0.6283	0.0991	$0.0030 \leftarrow \operatorname{smallish} q$	
2.6584	0.4646	0.6336	0.4583	0.1690	$0.0063 \leftarrow$ lerror	
2.8584	0.2794	0.5561	0.2742	$0.2767 \leftarrow$ large T_{5}	$0.0052 \leftarrow$ over	
3.0584	0.0831	0.5204	0.0894	$0.4373 \leftarrow$ lerrorl	$0.0063 \leftarrow$ the whole	
3.1416	9.0000	0.5240	0.0160	$0.5240 \leftarrow$ near π	$0.0160 \leftarrow$ interval	

***Note: To be honest, when we picked q as a "best approximation" for \sin on $[-\pi, \pi]$, we did so to make $\|\sin -q\|=\left(\int_{-\pi}^{\pi}(q(x)-\sin x)^{2} d x\right)^{1 / 2}$ as a small as possible; we didn't actually look at "point-by-point" of $|q(x)-\sin x|$, as we do in the table.

For a Fourier approximation $F_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \cos k x+\sum_{k=1}^{n} b_{k} \sin k x$ to a function f, we specifically said that having $\left\|F_{N}-f\right\|$ get small might not force $\left\|F_{N}(x)-f(x)\right\|$ get small for particular values of x.

Nevertheless, the table helps to give a feel of how the trigonometric polynomial $q(x)$ is a better approximation to the sin function over the whole interval $[-\pi, \pi]$ than some other polynomial of degree 5 such as $T_{5}(x)$.

