
Inner Product Spaces

In , we defined an  ‘8 inner product  .  Another notation? @ ? @† œ œ ? @ � ÞÞÞ � ? @X
" " 8 8

sometimes used is ? @ œ ? @† 
 ß � .

The inner product in has several  ( ) that we have‘8 important properties see Theorem 1, p. 331

used over and over.  Written with the notation, they are
 ß �? @

 a)  
 ß � 
 �? @ œ @ß?
 b)  
 ß � 
 � 
 ß �?� @ A œ ?ßA � @ A
 c)  
 - ß � œ - 
 ß �? @ ? @
 d)  0 and  if and only if 
 ß �   
 ß � œ ! œ Þ? ? ? ? ? !

Using the inner product, we then defined   || ||  and  between twolength distance? ? ?œ 
 ß � "Î#

vectors:  .  Finally we discussed the angle between vectorsll � ll œ 
 � ß � �? @ ? @ ? @ "Î#

and defined orthogonality ( ) by? @ ? @¼ 
 ß � œ !Þ

Earlier in the course, we took the essential properties of vectors for a starting point toin ‘8

define  ).  In the same spirit, we now use the essentialmore general vector spaces Z Ðp. 190

properties a)-d) of the inner product in as a guide for inner products in any vector space .‘8 Z
For a vector space  with real scalars, an  is a rule that produces aZ 
 ß �inner product ? @
scalar callfor every pair of vectors  in  in a way that? @ß Z a ) - d) are true. We  such a rule an

inner product    (because it acts like an inner product (in ‘8ÑÞ Properties a) - d) are modified

slightly when complex scalars are allowed.)  A vector space  with an inner product defined isZ
called an Because any inner product “acts just like” the inner product frominner product space.  

‘ ‘8 8, many of the theorems we proved about inner products for  are also true in any inner

product space.  You can look at an introduction to this material in Section 6.7 of the textbook.

Here is a little more detail using one specific exampleß GÒ � ß Ó œ1 1 the vector space of all

continuous real-valued functions defined on the interval .  Ò � ß Ó1 1 We'll call this vector space G
for short.

Everything hereafter in these notes is happening in GÞ

For vectors (functions)  in   by0 ß 1 Gß define an inner product

     (a scalar!)
 0ß 1 � œ 0ÐBÑ1ÐBÑ .B'
�1

1

A purely heuristic comment: in Calculus I this integral is defined (roughly) as follows: 

  divide  into subintervals of length  and pick a point  in each subintervalñ Ò � ß Ó B1 1
"
8 3

  form a “Riemann sum” ñ 0ÐB Ñ1ÐB Ñ œ 0ÐB Ñ1ÐB Ñ� �3 3 3 3
" "
8 8

 let n :  the integral is the limit of the Riemann sums ñ Ä ∞

The Riemann sum  resembles the definition for the dot product in if you�0ÐB Ñ1ÐB Ñ À3 3
8‘

imagine  and  as “the coordinates for the “vectors”  and , then  is0ÐB Ñ 1ÐB Ñ B 0 1 0ÐB Ñ1ÐB Ñ3 3 3 3 3�
analogous to an inner product in “add up the product of coordinates from and "‘8 À 0 1Þ



Notice that does satisfy a) - d): that is,  behaves like the inner product in :
 0ß 1 � 
 0ß 1 � ‘8

 a)  
 0ß 1 � 
 1ß 0 �œ
 because ' '

� �1 1

1 1
0ÐBÑ1ÐBÑ.B œ 1ÐBÑ0ÐBÑ .B

 b)  
 0 � 1ß 2 � œ 
 0ß 2 � � 
 1ß 2 �
 because ' ' '

� � �1 1 1

1 1 1
Ð0ÐBÑ � 1ÐBÑÑ2ÐBÑ .B œ 0ÐBÑ2ÐBÑ .B � 1ÐBÑ2ÐBÑ .B

 c)  c
 0ß 1 � œ - 
 0ß 1 �
 because ___?___

 d)  0  because 0.  And  if and only if
 0ß 0 �   0 ÐBÑ .B   
 0ß 0 � œ !'
�1

1 #

 the     0 œ Ð œ Ñ! !constant function You should try to convince yourself about d).

 Checking it needs the fact that function  in  are 0 G continuous. Why?

Using this new inner product, we make definitions in parallel to definitions in :G ‘8

 Define the  of  by norm 0 ll0 ll œ 
 0ß 0 � œ Ð 0 ÐBÑ .BÑ"Î# # "Î#
�
'

1

1

 Define the      as  distance between and0 1 ll 0 � 1 ll œ Ð Ð0ÐBÑ � 1ÐBÑÑ .BÑ'
�

# "Î#
1

1

There are certainly other ways to define “distance” between two functions  and .0 1
This way is called the  between  and .  It's popular withmean square distance 0 1
mathematicians and statisticians because it resembles the definition of distance in

‘8 as a “square root of a sum of squares” where “sum” is replaced by�
“integral.”  Moreover, behaves nicely, with properties similar to ordinaryll 0 � 1 ll 
distance in ‘8Þ

Notice that because of the squaring in the formula, “large differences” l0 ÐBÑ � 1ÐBÑl
have more influence than “small differences” in calculating the distance ll0 � 1llÞ

 We say     if 0 1 
 0ß 1 � œ 0ÐBÑ1ÐBÑ .B œ !and are orthogonal '
�1

1

 For example:  sin and cos are orthogonal on  becauseÒ � ß Ó1 1

 sin, cos
 � œ '
�1

1
Ð BÑÐ BÑ .Bsin cos

 sin cosœ Ð#BÑ .B œ � Ð#BÑl œ !" "
# #� �
'

1

1

1
1

Most of the tools we developed using inner products in still work.  For example:‘8

 For a subspace  of  we define  for all  in [ G À [ œ Ö0 À 
 0ß 1 � œ ! 1 [×¼

 :  Suppose  and that  is a subspace of Orthogonal Decomposition Theorem 0 − G [ G

 with an  .  Then we can write  where  andorthogonal basis Ö1 ß ÞÞÞß 1 × 0 œ 0 � 1 0 − [s s
" 8

 , and  and are unique.1 − [ 0 1s¼

  is called the projection of  on , also denoted proj  and0 0 [ 0ßs
[



   0 œ 1 � ÞÞÞ � 1s 
0ß 1 � 
0ß 1 �

1 ß 1 � 
1 ß 1 �" 8

" 8

" " 8 8

   is the function in   to ,  meaning that0 [ 0s closest

   || ||  for all  in 0 � 0 ll 
 0 � 1ll 1 [ ß 1 Á 0s s

 If  is a basis for a subspace  of , we can convert the basis into anÖ0 ß 0 ß ÞÞÞß 0 × [ G" # 8

 orthogonal basis  using the same  as in Ö1 ß ÞÞÞß 1 × Þ" 8
8Gram Schmidt formulas ‘

 :  Unlike ,  is  but that doesn't matter for the resultsNote infinite dimensional‘8 G A/
 just listed   What does matter is that the subspace  is :   has aÞ [ [finite dimensional

 finite (orthogonal) basis Ö1 ß ÞÞÞß 1 ×" 8 .

Some approximations in :  three examplesG

Example 1   Consider the subspace of G À

 Span cos cos cos , sin sin  sin[ œ Ö"ß Bß #Bß ÞÞÞß 8B Bß #Bß ÞÞÞß 8B×

Functions in  1 [ are the linear combinations of the functions that span ; these are[
sometimes called :trigonometric polynomials

           (*)Ð‡Ñ 1ÐBÑ œ - � + B� ÞÞÞ � + 8B� , B� ÞÞÞ � , 8B cos cos sin sin! " 8 " 8  

  œ - � + 5B � , 5B! 5 5
5œ" 5œ"

8 8
� �cos sin

proj is one such function: it is 
[
0  in best[  and it is the  approximation to  from meaning0 [ �

that if is in , then the distance  is smallest possible when 1 [ ll0 � 1ll 1 œ proj
[
0 Þ

Finding  is relatively easy because the functions sin sin  sin cosproj
[
0 "ß Bß #Bß ÞÞÞß 8Bß Bß

cos cos  form an  for .  However, we should check that fact.  Doing#Bß ÞÞÞ ß 8B [orthogonal basis

so involves some integrations that use some trig identities:

  sin sin  cos cosE F œ Ò ÐE�FÑ � ÐE � FÑ Ó"
#

  cos cos cos cosE F œ Ò ÐE�FÑ � ÐE � FÑ Ó"
#

  sin cos sin sinE F œ Ò ÐE�FÑ � ÐE � FÑ Ó"
#

  cos#E œ " � #E
#

cos

  sin#E œ " � #E
#

cos

    is orthogonal to any of the other functions cos  to sinñ " 5B 5B À



  cos sin' ¹
-1

1

1

1

" † Ð5BÑ .B œ Ð5BÑ œ !"
5 �

  sin cos' ¹
-1

1

1

1

" † Ð5BÑ .B œ � Ð5BÑ œ !"
5 �

  sin  and cos  are orthogonal:ñ 5B 5B

  sin cos' ¹
-1

1

1

1

Ð5BÑ Ð5BÑ .B œ œ !
sin#Ð5BÑ

#5 �

  finally, for ñ 5 Á 7

     sin sin  cos cos' '
- -1 1

1 1
Ð7BÑ Ð5BÑ .B œ Ò Ð7 � 5ÑB � Ð7 � 5ÑBÓ .B"

#

     œ œ !Œ ¹sin sinÐ7 � 5ÑB Ð7 � 5ÑB
#Ð7 � 5Ñ #Ð7 � 5Ñ�

�1

1

     cos cos cos cos' '
- -1 1

1 1
Ð7BÑ Ð5BÑ .B œ Ò Ð7 � 5ÑB � Ð7 � 5ÑBÓ .B"

#

     œ œ !Œ ¹sin sinÐ7 � 5ÑB Ð7 � 5ÑB
#Ð7 � 5Ñ #Ð7 � 5Ñ�

�1

1

  sin cos  sin sin' '
- -1 1

1 1
Ð7BÑ Ð5BÑ .B œ Ò Ð7 � 5ÑB � Ð7 � 5ÑBÓ .B"

#

     œ œ !Œ ¹� �cos cosÐ7 � 5ÑB Ð7 � 5ÑB
#Ð7 � 5Ñ #Ð7 � 5Ñ �1

1

We can also compute two other integrals that we will need:

  cos cos' ' Œ º- -1 1

1 1
1

#

�3

5B 5B .B œ .B œ œ
" � #5B B #5B

# # %5
cos sin� 1

  sin cos' ' Œ º- -1 1

1 1
1

#

�3

5B 5B .B œ .B œ œ" � #5B B #5B
# # %5

cos sin� 1

Notation Alert:  If  is any function in , we can compute proj the function in closest0 G 0 œ [
[

to . As you might recognize, these calculations are  related to a topic called 0 closely Fourier

analysis. In Fourier analysis some functions  have what's called a “Fourier transform,”ß 0

denoted by 0 0 œ 0às s.  This is something very different from proj so in this example we will use
[

only the notation proj  instead of   to avoid possible confusion with the Fourier transform by
[
0 0s

those who know something about it.)

proj
[
0  is a function that looks like (*). We can use the projection formula to determine its

coefficients.



proj
[
0  œ �


0ÐBÑß"�

"ß"� "


0ÐBÑß B� 
0ÐBÑß 8B�

 Bß B� 
 8Bß 8B�

cos cos

cos cos cos cos
cos cosB � ÞÞÞ � 8B

  �

0ÐBÑß B� 
0ÐBÑß 8 B�

 Bß B� 
 8Bß 8B�

sin sin

sin sin sin sin
sin sinB � ÞÞÞ � 8B

  The denominators don't depend on 0 À

  
 "ß " � œ " † " .B œ #'
�1

1
1

   ( )
 5Bß 5B œ 5B .B œcos cos > cos'
�

#
1

1
1 see calculation above

   ( )
 5Bß 5B œ 5B .B œsin sin > sin'
�

#
1

1
1 see calculation above

So proj[ 0 œ "
#1 
 0ÐBÑß " � 1 � " "

1 1

 0ÐBÑß B � � ÞÞÞ � 
 0ÐBÑß 8Bcos cos >

   � " "
1 1


 0ÐBÑß B � � ÞÞÞ � 
 0ÐBÑß 8Bsin sin >

  

œ �" "
# Ð 0ÐBÑ † " .BÑ

1
'
�1

1
" B 8B" "

1 1
Ð 0ÐBÑ † B .BÑ � ÞÞÞ � Ð 0ÐBÑ † 8B .BÑ' '

� �1 1

1 1
cos coscos cos 

   � " "
1 1
Ð 0ÐBÑ † B .BÑ � ÞÞÞ � Ð 0ÐBÑ † 8B .BÑ' '

� �1 1

1 1
sin sinsin sinB 8B

so

    proj        **
[
0 œ � Ð Ñ+

#
! � � �

5œ" 5œ"

8 8

+5 cos sin  5B 5B ,5

where   +! œ 0ÐBÑ † " .B"
1
'

�1

1

 and  
for 

for + œ Ð Ñ5
"

�1 1

1' 0ÐBÑ † 5B .Bcos " Ÿ 5 Ÿ 8

" Ÿ 5 Ÿ 8, œ Ð5
"

� 
1 1

1' 0ÐBÑ † 8B .BÑsin

The   and used here to write projcoefficients + , 05 5 [  are called the Fourier coefficients of 0
and the “trigonometric series” (**) is the  Fourier approximation for .8 0th

Fact:  If  then the approximation error as measured by our distance function8 Ä ∞ß Ð Ñ
ll 0 � 0 ll Ä !proj .  This is called .[ ) mean square convergence

Mean square convergence is  equivalent to saying:not

     projfor each B − Ò � ß Óß 0 ÐBÑ1 1 lim
8Ä∞

[ Ä 0ÐBÑ   ( )this is called pointwise convergence

It's a much harder problem to characterize for which  's and 's this is true.0 B



Concrete Example:  Find the Fourier approximation for  on the interval  and8 0ÐBÑ œ B Ò � ß Óth 1 1

compare the graphs.

 + œ B † " .B œ !! �
"
1
'

1

1

 cos  because cos  is an odd function+ œ Ð B 5B .B œ ! B Ð5BÑ5 �
"
1
'

1

1

     (for an odd function over  the“positive” andÒ � ß Ó1 1

     “negative” areas between the graph and the -axisB
     cancel out)

 sin, œ Ð B † 5B .BÑ œ Ð Ñ œ Ò � � Ð ÑÓ5 �
�

" " 5B 5B "
5 51 1 1

' º1

1

1

1

� B �cos sin
# 1 1

Ð�"Ñ Ð�"Ñ
5 5

5 5

         integration by partsÅ

     œ œ
�#Ð�"Ñ

5
"5 #Ð� Ñ
5

5�"

So for  on , we get the approximation0ÐBÑ œ B Ò � ß Ó1 1

 B ¸ , B � ÞÞÞ � , 8B œ # B � " #B � $B � ÞÞÞ � 8B" 8
#
$sin sin  sin sin sin sin

#Ð�"Ñ
8

8�"

     œ # B � Ð � "ÑŠ ‹sin sin sin sin#B $B 8B
# $ 8� � ÞÞÞ � 8�"

Here are three graphs for comparison, using 1 and 10:8 œ ß $ß

Notice not (  clear in the pictures) that every Fourier approximation

 # B � Ð � "ÑŠ ‹sin sin sin sin#B $B 8B
# $ B� � ÞÞÞ � 8�"

has value  at the endpoints , but the function  is not  at the endpoints:  at ! „ 0ÐBÑ œ B !1 1

and  the value of Fourier polynomials  a limit,  but   � ß !ß ! Á 0Ð Ñ œ 0Ð � ÑÞ1 1 1do have



Example 2   We are still working in G œ GÒ � ß ÓÞ1 1 Let  be the subspace of  containing the[ G
polynomials of degree Ÿ & À

   Span[ œ Ö"ß Bß B ß B ß B ß B ×# $ % &

F MATLAB will handle the detail  for us.ind the polynomial in  closest to the function sin.[   =

The polynomial we want is proj  sin;   is the “best approximation from ” to the function; œ ; [[

sin, meaning that the approximation error

 sin sin  ll ; � ll œ l ;ÐBÑ � Bl .BŠ ‹'
�

#
"Î#

1

1
is smaller than

 sin sin   for any ll : � ll œ l :ÐBÑ � Bl .B : − [ß : Á ;Š ‹'
�

#
"Î#

1

1



It's easy to compute proj sin  if we have  basis for , so we convert
 [

orthonormal [

 the standard basis for      [ Ö@ ß @ ß ÞÞÞß @ × œ Ö"ß Bß B ß ÞÞÞß B ×" # '
# &

 into an orthonormal basis that we'll call  Ö/ ß / ß / ß ÞÞÞß / ×" # '$

using the Gram-Schmidt Process Since MATLAB is going to do the work, we will normalize atÞ
each step in the process.  (For hand calculations, the arithmetic would be simpler to just use

Gram Schmidt to get an orthogonal basis and after Gram Schmidt is completed, then normalize

each of those vectors.)  

Note: the integrations below were done using MATLAB.  Notice that  integrationevery

used to find the 's is very easy, but that the constants that arise are messy and pile up/3

fast; they can easily lead to errors when the computation is done by hand.  Try to

compute at least  e  for yourself (with or without computer assistance) to be sure" # $ß / ß /
you understand what's going on. The steps are the same as for the usual Gram Schmidt

process in ‘8Þ

We start the process with .  But  is not a  vector in because @ œ " @ G ll@ ll œ ll"ll" " "
# #unit

œ " † " .B œ # Þ'
�1

1
1  So we normalize and let

 / œ"
@

ll @ ll ll"ll
" "

#
"

"
œ œ È 1

For in turn we use the Gram Schmidt formula, normalizing at each4 œ #ß ÞÞÞß '
step to get a unit vector:

  /4 œ @ � 
@ ß/ �/ � 
@ ß/ �/ � ÞÞÞ � 
@ ß/ �/
@ � 
@ ß/ �/ � 
@ ß/ �/ � ÞÞÞ � 
@ ß/ �/

4 4 " " 4 # 4 4 �" 4�"

4 4 " " 4 # # 4 4 �" 4�"

2

||  ||

So / œ#
@ � 
@ ß/ �/

ll@ � 
@ ß/ �/ ll

B � B† .B †

llB � B† .B † ll
# # " "

# # " "

�
" "
# #

�
" "
# #

œ
ˆ ‰'
ˆ ‰' 1

1

1 1

1

1

1 1

È È
È È

    since œ    B
llBll Ð B .B œ !Ñ'

�1

1

 œ œ œB B

B†B .B Ð' Ñ

' B

#ˆ ‰'
ÈÈ

�

"Î# "
$

"Î#

1

1 1 1 1 1
 

Then

/$ œ @ � 
@ ß/ �/ � 
@ ß/ �/
ll @ � 
@ ß/ �/ � 
@ ß/ �/ ll

B � Ð B †/ .BÑ/ � Ð B †/ .BÑ/

ll B � Ð B †/ .BÑ/ � Ð B †/ .BÑ/ ll
$ $ " " $ # #

$ $ " " $ # #

# # #
� �" " # #

# # #
� �" " # #

œ
' '' '1 1

1 1

1 1

1 1

 

œ
B � Ð B † .BÑ† � Ð B † .BÑ†

ll B � Ð B † .BÑ† � Ð B † .BÑ† ll

# # #
� �

' B ' B

# #

# # #
� �

' B ' B

# #

' '
' '

1 1

1 1

1 1 1 1

1 1

1 1

1 1 1 1

" "
# #

" "
# #

È È
È È

1 1

1 1

È ÈÈ ÈÈ ÈÈ È

     Notice that each integration requires no calculus harder than .' B .B8

     But already the constants are becoming a headache.



œ ÞÞÞ œ      "
)

È È
È) %& ÐB � Ñ# #"

$

&

1

1

Continuing in this way gives:

 / œ ÞÞÞ œ%
"
)      
È È

È"(& ) ÐB � BÑ$ #$
&

(

1

1

       / œ ÞÞÞ œ&
"

"#)

È È Š ‹
È

""!#& "#) B � � ÐB � Ñ% % # # #" ' "
& ( $

*

1 1 1

1
ß  and finally

       / œ ÞÞÞ œ'
"

"#)

È È Š ‹
È

"#) %$'&* B � B � ÐB � BÑ& % # $ #$ "! $
( * &

""

1 1 1

1

Then  form an orthonormal basis for . With them, we can use the projection formula/ ß ÞÞÞß / [" '

to compute

 proj sin sin , sin , sin;ÐBÑ œ B œ 
 B / � / � 
 B / � / � ÞÞÞ � 
 Bß / � /
[ " " # # ' '

œ Ð Ð BÑ .BÑ � Ð Ð BÑ/ .BÑ/ � ÞÞÞ � Ð Ð BÑ/ .BÑ/' ' '
� � �# # ' '1 1 1

1 1 1
sin sin     sin/ /" "

œ Ð BÑ .B Ð BÑ .BÐ Ñ � Ð Ñ †' '
� �

' B ' B
# #1 1

1 1

1 1 1 1
sin sin

" "
# #È È1 1

È ÈÈ È

 sin � Ð Ñ †'
�1

1
Ð BÑ .B" "

) )

) %& ÐB � Ñ ) %& ÐB � ÑÈ ÈÈ ÈÈ È
# # # #" "

$ $
& &

1 1

1 1

 

       � ÞÞÞ � three more integral terms corresponding to  and / ß / ß /% & '

 Notice that the integrations needed are now a bit more challenging because they(

 involve terms like sin  .  But they are manageable, with enough patience,' B B .B8

 using integration by parts.)



When all the smoke clears and terms are combined, MATLAB has produced 

    ;ÐBÑ œ Ð& � ('& � (%#& ÑB � Ð$(&! � $! � $%'&! ÑB#"
)

) ' % % ' # $
1"! Š 1 1 1 1 1 1

       (***)� Ð$$ � $%'& � $"")&ÑB1 1% # &‹

If we convert the  coefficients in (*) to  decimal coefficients we haveexact approximate

 

           (***);ÐBÑ ¸ B � B � B!Þ*)()'#"$&&(%'( !Þ"&&#("%"!'$$%$ !Þ!!&'%$""(*('$&$ &

Remember that everything in these examples is happening on the interval  on thatÒ � ß Ó À1 1

interval, the polynomial  is the “best fit to the function sin” from among the polynomials in ; [
(the polynomials with degree ). Best fit means thatŸ &

 if  is any polynomial with degree ,   : Ÿ & : Á ;Þ

 sin ( sin ) sin sin ||ll ; � ll œ Ð;ÐBÑ � BÑ .B 
 Ð Ð:ÐBÑ � BÑ .BÑ œ ll : �' '
� �

# "Î# # "Î#
1 1

1 1

 

   

Example 3  For comparison with here;ÐBÑß  is a 5 degree polynomial approximation for sinth B
that you should already know from Calculus II:   the 5 degree Taylor polynomial   ,th

  

 X ÐBÑ œ 0Ð!Ñ � 0 Ð!ÑB � B � ÞÞÞ � B&
w # &0 Ð!Ñ 0 ÐBÑ

#x &x

ww Ð@Ñ

 For sin this gives0ÐBÑ œ Bß

  sin B ¸ X ÐBÑ œ B � �&
B B
$x &x

$ &

 With approximate decimal coefficients,

  X ÐBÑ œ B � !Þ"''''''''''''(B � !Þ!!)$$$$$$$$$$$B Ð&
$ & compare coefficients

         with those in ;ÐBÑÑ

Because  is constructed using derivatives of  X ÐBÑ 0& at 0,  it gives a better approximation for sin B
near !, but the approximation error gets larger and larger error as  moves further from .B !

We can see this in the figure on the next page.



The figure below shows the graphs of sin ,  and  on the interval B X ÐBÑ ;ÐBÑ Ò � ß ÓÞ& 1 1

Across the whole interval the graphs of sin  and  are so close that you can't see aÒ � ß Ó À B ;ÐBÑ1 1

difference between them (at the scale of this graph).

Near !, you also can't see the difference between  and sin , but that difference becomesX ÐBÑ B&

clear in the picture as you move closer to the endpoints „ Þ1

The table on the following page illustrates three things (the third is not clear from the graphs

above):

 i) As we move away from  toward , the approximation to sin  using  is not! „ B X ÐBÑ1 &

as good as the  approximation;ÐBÑ

 ii) Linear algebra gives us the  approximation.  It has the advantage that it gives us a;ÐBÑ
good approximation for sin   B Ò � ß ÓÞover the whole interval 1 1

 iii) Near , the Taylor polynomial  is actually a ! X ÐBÑ& better approximation than to;ÐBÑ
sin  (B in some sense, the best of all 5  degree polynomial approximationsX ÐBÑ&  is actually th

to sin   B !near ).



All table values are rounded to 4 significant digits for example, 0.0000 is not exactly À !

     Error    Error *** l l œ l l œ
          sin   sin     sin  B B X ÐBÑ ;ÐBÑ l B � X ÐBÑ l l B � ;ÐBÑ l& &

   -3.1416   -0.0000   -0.5240   -0.0160    0.5240    .0160 Ã Ã ; large smallishX !&

   -2.9416   -0.1987   -0.5347   -0.1966    0.3361    0.0021 Ã Ã |error| |error|

   -2.7416   -0.3894   -0.5979   -0.3827    0.2084    0.0067 Ã � Ã near over1
   -2.5416   -0.5646   -0.6891   -0.5600    0.1244       0.0047 ã Ã the whole

   -2.3416   -0.7174   -0.7884   -0.7169    0.0710       0.0005 Ã interval

   -2.1416   -0.8415   -0.8800   -0.8447    0.0385       0.0032          ã
   -1.9416   -0.9320   -0.9516   -0.9372    0.0196       0.0052

   -1.7416   -0.9854   -0.9947   -0.9906    0.0092             0.0052Î Î
   -1.5416   -0.9996   -1.0035   -1.0032    0.0040       0.0036

   -1.3416   -0.9738   -0.9754   -0.9749    0.0015       0.0011

   -1.1416   -0.9093   -0.9098   -0.9077    0.0005       0.0016

   -0.9416   -0.8085   -0.8086   -0.8047    0.0001       0.0038

   -0.5416   -0.5155   -0.5155   -0.5106    0.0000       0.0049Ã Ãvery but |error|

   -0.3416   -0.3350   -0.3350   -0.3313    0.0000      0.0037Ã Ã ;small for 

   -0.1416   -0.1411   -0.1411   -0.1394    0.0000      0.0017Ã l l Ã !error near is small

   0.0584    0.0584    0.0584    0.0577    0.0000    0.0007Ã ! Ãnear but larger

    0.2584    0.2555    0.2555    0.2526    0.0000   0.0029Ã using than |error|Ã
   0.4584    0.4425    0.4425    0.4380    0.0000     0.0045Ã X Ã& &for the T

    0.6584    0.6119    0.6119    0.6068    0.0000    0.0051Ã Ãapprox approx

   0.8584    0.7568    0.7569    0.7524    0.0001     0.0044   ã ã
   1.0584    0.8716    0.8719    0.8690    0.0003       0.0026

   1.2584    0.9516    0.9526    0.9515    0.0010       0.0001

1.4584    0.9937    0.9964    0.9963    0.0027       0.0026  

    1.6584    0.9962    1.0028    1.0009    0.0066       0.0047

    1.8584    0.9589    0.9734    0.9644    0.0145              0.0054Î Î
    2.0584    0.8835    0.9128    0.8877    0.0293       0.0043

    2.2584    0.7728    0.8282    0.7740    0.0554       0.0012

    2.4584    0.6313    0.7304    0.6283    0.0991       0.0030 Ã ; smallish

    2.6584    0.4646    0.6336    0.4583    0.1690       0.0063ã Ã  |error|

    2.8584    0.2794    0.5561    0.2742    0.2767     0.0052 Ã X large over& Ã
    3.0584    0.0831    0.5204    0.0894    0.4373     0.0063 Ã Ã |error| the whole

3.1416 9.0000 0.5240 0.0160 0.5240      0.0160 Ã Ã near interval1

***Note:  To be honest, when we picked  as a “best approximation” for sin on , we did; Ò � ß Ó1 1

so to make sin sin  as a small as possible;  we didn't actuallyll � ;ll œ Ð Ð;ÐBÑ � BÑ .BÑ'
�

# "Î#
1

1

look at “point-by-point” of sin , as we do in the table.l ;ÐBÑ � B l

     For a Fourier approximation  weJ ÐBÑ œ8
+
#

5œ" 5œ"

8 8

5 5
! � + 5B � , 5B 0� �cos sin  to a function , 

specifically said that having  get small might not force  get small forll J � 0ll ll J ÐBÑ � 0ÐBÑllR R

particular values of .B
    Nevertheless, the table helps to give a feel of how the trigonometric polynomial  is a;ÐBÑ
better approximation to the sin function over the whole interval than some otherÒ � ß Ó1 1

polynomial of degree  such as & X ÐBÑÞ&   


