Example Find the least squares solution for $\left[\begin{array}{rr}2 & 1 \\ 3 & -1\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{rr}
2 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
2 & 1 \\
3 & -1
\end{array}\right]=\left[\begin{array}{cc}
13 & -1 \\
-1 & 2
\end{array}\right] \\
& A^{T} \boldsymbol{b}=\left[\begin{array}{l}
5 \\
0
\end{array}\right]
\end{aligned}
$$

The system of normal equations is

$$
\left[\begin{array}{cc}
13 & -1 \\
-1 & 2
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

Here $A^{T} A$ is invertible: $\left[\begin{array}{cc}13 & -1 \\ -1 & 2\end{array}\right]^{-1}=\frac{1}{25}\left[\begin{array}{cc}2 & 1 \\ 1 & 13\end{array}\right]$, so there is a unique least squares solution:

$$
\widehat{\boldsymbol{x}}=\frac{1}{25}\left[\begin{array}{cc}
2 & 1 \\
1 & 13
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{2}{5} \\
\frac{1}{5}
\end{array}\right] .
$$

In this case, the least squares error is
${ }^{(*)}\|\boldsymbol{b}-A \widehat{\boldsymbol{x}}\|=\|\boldsymbol{b}-\widehat{\boldsymbol{b}}\|=\left\|\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}\frac{2}{5} \\ \frac{1}{5}\end{array}\right]\right\|=\left\|\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\|=0 \quad$!
Least squares error $=0$ means that $A \widehat{\boldsymbol{x}}=\widehat{\boldsymbol{b}}=\boldsymbol{b}$: the least squares solution $\widehat{\boldsymbol{x}}=\left[\begin{array}{c}\frac{2}{5} \\ \frac{1}{5}\end{array}\right]$ is the exact solution. We didn't notice, in the beginning, that $A \boldsymbol{x}=\boldsymbol{b}$ is a consistent system.

No harm done - but using the least squares method wasn't necessary (and if I had not computed the least squares error, I would probably not have noticed that I really found an exact solution to the original system).

Example Fitting data to a simple linear regression model: $y=\beta_{0}+\beta_{1} x$
To see whether a widely used food preservative contributes to the hyperactivity of preschool children, a dietitian chose a random sample of 10 four-year-olds known to be fairly hyperactive from various nursery schools and observed their behavior 45 minutes after having eaten measured amounts of food containing the preservative. For the $i^{\text {th }}$ child, the table shows the amount x_{i} of food containing the preservative consumed (measured in g) and y_{i} shows a subjective rating of hyperactivity, on a 1-20 scale, based on the child's restlessness and interaction with other children:

i	x_{i}	y_{i}
1	36	6
2	82	14
3	45	5
4	49	13
5	21	5
6	58	14
7	73	11
8	85	18
9	52	6
10	24	8

In the notation of the preceding discussion, we have

so the normal equations $X^{T} X \boldsymbol{\beta}=X^{T} \boldsymbol{y}$ are

$$
\left[\begin{array}{rr}
10 & 525 \\
525 & 32085
\end{array}\right] \boldsymbol{\beta}=\left[\begin{array}{r}
100 \\
5980
\end{array}\right]
$$

$X^{T} X$ is invertible, so there is a unique least squares solution:

$$
\begin{aligned}
\boldsymbol{\beta}=\widehat{\boldsymbol{\beta}} & =\left[\begin{array}{rr}
10 & 525 \\
525 & 32085
\end{array}\right]^{-1}\left[\begin{array}{r}
100 \\
5980
\end{array}\right]=\frac{1}{45225}\left[\begin{array}{rr}
32085 & -525 \\
-525 & 10
\end{array}\right]\left[\begin{array}{c}
100 \\
5980
\end{array}\right] \\
& \approx\left[\begin{array}{l}
1.5257 \\
0.1614
\end{array}\right]=\left[\begin{array}{l}
\widehat{\beta}_{0} \\
\widehat{\beta}_{1}
\end{array}\right] \text { (rounded to 4 decimal places). }
\end{aligned}
$$

The regression line is $\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x \approx 1.5257+0.1614 x$.
The data points and the regression line are pictured below.

$\beta_{0}+\beta_{1} x$: the regression line $\widehat{\beta}_{0}+\widehat{\beta}_{1} x$ corresponds to choosing $\boldsymbol{\beta}=\widehat{\boldsymbol{\beta}}=\left[\begin{array}{l}\widehat{\beta}_{0} \\ \widehat{\beta}_{1}\end{array}\right]$.
This makes $\|X \widehat{\boldsymbol{\beta}}-\boldsymbol{y}\| \leq\|X \boldsymbol{\beta}-\boldsymbol{y}\|$ for all choices of $\boldsymbol{\beta}$
\|
$\sqrt{\sum(\text { residuals })^{2}}$

