
PY E œ P † YDecomposition: Factoring 

Motivation   To , we can row reduce the augmented matrixsolve EB ,œ

   | Ò l Ó µ ÞÞÞ µ Ò Ó+ + ÞÞÞ + ÞÞÞ + , - - ÞÞÞ - ÞÞÞ - ." # 3 8 " # 3 8 

until   is in an  form (  Ò Ó- - ÞÞÞ - ÞÞÞ -" # 3 8 echelon this is the “forward” part of the row reduction
process .  ) Then we can

 i) use “back substitution” to solve for orBß

 ii) continue on with the second (“ ”) part of the row reduction processbackward
 until Ò Ó- - ÞÞÞ - ÞÞÞ -" # 3 8  is in row reduced echelon form, at which point it's  
 easy to read off the solutions of E œ ÞB ,

A computer might take the first approach; the second might be better for hand calculations.  But
both i) and ii) take about the same number of arithmetic operations (see the first paragraph about
“back substitution” in Sec. 1.2 (p. 19) of the textbook).

Whether we use i) or ii) to solve, it is sometimes necessary in applications to solve a  systemlarge
E œ E B , , many times with the same  but changing each time perhaps a system with millions
of variables and solving thousands of times!  Just for example,  read the description of the aircraft
design problem at the beginning of Chapter 2.    each time Row reducing Ò l Ó+ + ÞÞÞ + ÞÞÞ + ," # 3 8  
is too inefficient, even if a computer is doing the work.

One way to avoid these repeated row reductions is to try to factor , in a wayE once and for all, 
that makes it relatively easy to solve  again and again as  changes. This is oneE œB , ,
motivation for the “ decomposition” (also called an “ factorization”).PY PY

The  DecompositionPY    An  is a factorizationPY 7‚ 8 Edecomposition of an  matrix 

 
 is an  form of , and
 is a square  matrixE œ P † Y

Y E
P where 




echelon
unit lower triangular

         For a square matrix, r means “all 's above thelower triangula !
         diagonal,” and unit on lower triangular means only 's  the diagonal"

 A couple of observations:

     has the same  shape as  because is an echelon form of .ñ Y 7 ‚ 8 E Y E
    If  and happen to be square, then the echelon form is automatically   ñ E Y Y
  triangular. has only 's below theupper   But even when is not square,  Y Y !
 leading entry in each row, so still “resembles” an  triangular matrix.Y upper
    Since  is square,  must be  for the product to make sense.ñ P P 7‚7 PY
 Since  is  lower triangular,  is always invertible why? think about theP P Ðunit
   row reduced echelon form for  PÑ

It's  not always possible is to find an -decomposition for . But when it  possible, the numberPY E
of steps in the calculation is not much different from the number of steps required to solve



E œB ,  ( ) by row reduction.  Andonce!  if we can factor  in this way, , then itE once and for all
takes relatively few additional steps to solve for each time a new  is chosen.E œB , B ,

Why?  If we can write then we can substitute .  Then  the E œ PY œ ß Y œB B , B C original
matrix equation  is replaced by  new ones.E œB ,  two

   (**)
      
     P œ

œ Y
C ,
C B

This is an improvement (as Example 1 shows) because:

 i)  Solving for  is easy since  is lower triangular; andP œ PC , C  
 ii) After finding then solving C ß Y œ YB C is easy because  is already
    in echelon form
 iii)  and  remain the same even if we keep changing P Y Þ,

Example 1  Find an decomposition of PY E œ
 
 
"  " #
# " !
! % #

and use it to solve the matrix

equation 
   
   
"  " # #
# " ! "
! % #  "

ÞB œ

First, reduce  to an echelon form . (E Y It turns out that we need to be careful about what EROs
we use for the row reduction. For now, just follow along; the discussion that comes later will
explain what caution is necessary.)   Each elementary row operation we use corresponds to left
multiplication by an elementary matrix , and we record those matrices at each step.I3

 E œ
     
     
"  " # "  " #
# " ! ! $  %
! % # ! % #

µ µ œ Y

"  " #
! $  %

! ! ##
$

(an echelon form)
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                 I œ"

   
   

" ! !
 # " !

! ! "
I œ

" ! !
! " !

!  "
 #

%
$

Expressed in terms of multiplication by elementary matrices,  soI I E œ Yß# "

E œ ÐI I Ñ Y œ I I ÐI I Ñ † Y# "
" " " " "

" # " #          
Æ Æ Æ Æ Æ             

    
    
"  " #
# " !
! % #

œ

" ! !
# " !

! "

"  " #
! $  %

! !

  
  

" ! !
# " !
! ! "

" ! !
! " !

! "
Y œ

%
$

%
$

##
$

  

    
In this example, is , so I I I I E" # " #

" " " "unit lower triangular, so we let    is theP œ œ PY
decomposition we want.  (   Were we just lucky? No, turned out to be unit lowerI I" #

" " 
triangular because we were careful in how we did the row reduction: see the discussion below.)



To solve   
 
 
"  " #
# " !
! % #

B Bœ œ
     
     
" ! !
# " !

! "

"  " #
! $  %

! !

#
"

 "%
$

##
$

.

                |___________|
  Å Å Å
                  E œ P † YB B ,œ

Let  and substitute. Then we get two equationsY œB C 

(**)     that is,    
   P œ

œ Y

œ

œ Y œ

C ,
C B

C

C B B

  

   
   

 

P

" ! !
# " !

! "

#
"

 "

"  " #
! $  %

! !

C œ
%
$

##
$

First solve the top equation for e could reduceC ,Þ ÓTo do this, w to row reduced echelonÒP
form, or we can use “forward substitution” just like back substitution but starting with the top
equation.   we need only a few steps to get because  is lower triangular. UsingEither way C P
forward substitution gives:

  C œ #à"

  and thenC œ "  #C œ  $à# "

  ,    so C œ  "  C œ $ œ$ #
%
$ C

   
   
C

C

"

$

C  $œ
#

$
#

Then the second equation becomes , which we can quickly
   
   
"  " #
! $  %

! !

#
 $

$##
$

B œ

solve with back substitution or further row reduction.  Using back substitution gives:

  B œ $Ð Ñ œ$
$ *
## ##

  , so , and$B œ  $  %ÐB Ñ œ  B œ # $ #
"& &
"" ""

  .   Therefore  B œ #  B  #ÐB Ñ œ" # $
)
"" B œ œ 

B
B
B

 
 

   
"

#

$

)
""
&
""
*
##



Example 1 continued same coefficient matrix  but different , :  E ,

Now that we have factored  we can solve another equation E œ PY EB œ
 
 

"
#
!

 easily:

                  See above: here only , has changed !
                  Æ

  

   

   

  
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%
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œ
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By forward substitution ;   2 0;   0 0: so C œ " C œ #  Ð"Ñ œ C œ  Ð Ñ œ Þ
"
!
!

" # $
%
$ C œ

 
 

Then the second equation becomes and, by back substitution,
   
   
"  " #
! $  %

! !

"
!
!##

$

B œ

B œ ! $B œ !  %Ð!Ñ B œ ! B œ "  "Ð!Ñ  #Ð!Ñ œ " Þ
"
!
!

$ # # "; so ;  and :   so  B œ
 
 

When does the method in Example 1 work?   We can  perform the steps illustrated inalways
Example 1 to get a factorization   , where  is an echelon form of  and where  is aE œ ^ ‡ Y Y E ^
product of elementary matrices   Ðin Example 1,  ^ œ I I" #

" "Ñ. But  won't always turn out to^
be lower triangular (so that  might not deserve the name “ ”).  So when does the method work?^ P
( )Compare the comments below to Example 1.

Suppose ( ) that the  type of ERO used to row reduce  is “add aas in Example " only E
multiple of a row to a  row.”  Let these EROs correspond to the elementary matriceslower
I ß ÞÞÞß I I † ÞÞÞ † I E œ Y E œ I † ÞÞÞ † I Y Þ I" : : " 3"

" "
:.  Then  and therefore Each matrix 

and its inverse  will be unit lower triangular Then  isI Ð P œ I † ÞÞÞ † I3
"

"
" "

:why? .  Ñ

also lower triangular with 's on its diagonal. (" Convince yourself that a product of unit
lower triangular matrices is a unit lower triangular matrix.)

On the other hand:

 i) if a row rescaling ERO had been used, then the corresponding elementary
matrix would not have only 's on the diagonal and therefore the product" 
I † ÞÞÞ † I"

" "
:  might not be  lower triangular.unit

 ii) if a row interchange (“swap”) ERO had been used, then the corresponding
elementary matrix would not be lower triangular and therefore the product
I † ÞÞÞ † I"

" "
:  might not be lower triangular.



To summarize:  the method illustrated in Example 1 always produces an PY
decomposition for  ifE

 the  EROs used to row reduce  to  are of the formonly E Y
  “add a multiple of a row to a lower row.”                     Ð‡Ñ

In that case:  let the EROs used correspond to the elementary matrices I ß ÞÞÞÞß I" :.
Then is in echelon form andI † ÞÞÞ † I E œ Y: "

  
 , where          E œ PY P œ ÐI † ÞÞÞ † I Ñ œ I † ÞÞÞ † I Ð‡‡Ñ: "

" " "
" :

     is unit lower triangular

The restriction in  is not as severe as it sounds.  For example,Ð‡Ñ
 

ñ  When you do row reduction following the standard procedure outlined in the text, you
never add a multiple of a row to a higher row.  You do it to create 's  a pivot. So! below
adding multiples of rows  is no special restriction:  it's really justonly to lower rows
“standard procedure.”

ñ  “No row rescaling” is at most an inconvenience.  Rescaling can be helpful (when doing
the row reduction arithmetic by hand), but rescaling i never  to reduces necessary
E to echelon form.  (Of course, row rescaling  be needed to continue from echelonmight
form to row  echelon form to do that, we may  rescaling to convert leadingreduced  need
entries into 's )" .

Side comment:  If we did allow row rescaling, it would just mean that we might
end up with a lower triangular “ ” with some diagonal entries .  From anP Á "
equation-solving point of view, this would not be a disaster.  However, the text
follows the rule that  should have only 's on its diagonal, so we'll stick to thatP "
convention.

But  really does impose   restriction:  for example, Ð‡Ñ E œsome
 
 
! # !
# ! !
! ! #

simply cannot be

reduced to echelon form without swapping rows  and .  Here the method in Example 1 simply" #
will not work to produce an decomposition.  However ( ,PY see the last section of these notes)
there is a work-around that is “almost as good” as an  decomposition in such situations.PY



Finding  more efficientlyP

If  is large, then row reducing to echelon form may create very many elementary matrices E E I3

in the formula so that formula involves too much work to find .  Fortunately, there is aÐ‡‡Ñ  P
technique, illustrated in Example 2, to write down , entry by entry, as  is being row reduced.P E
(The text gives a slightly different presentation, and an explanation of why it works. It's really
nothing more than careful bookkeeping, Since we're just surveying this technique, we will only
write down “the method.”)

Assume  is  and that it can be row-reduced to following the rule Then will be aE 7‚ 8 Y Ð‡ÑÞ P
square  matrix, and   :7‚7 Pyou can write down using these steps

     Put 's on the diagonal of  and 's everywhere above the diagonalñ " P !

     Whenever a row operation “add  times row  to a lower row ” is used,ñ - 3 4
 then enter  in the  position of : in the  position   - Ð4ß 3Ñ P Ð Ð4ß 3Ñ ß Ð3ß 4Ñ Ñcareful not

     When  has been reduced to echelon form, fill in any remaining empty positions in ñ E P
           with 's.!

If we apply these steps to the computations in Example 1, here's what they look like:

    was , so start with ñ E $ ‚ $ P œ
 
 
" ! !

" !
"

*
* *

 The row operations used in Example 1 were:ñ  

  add row 1  to row , so use “ ” as the entry in : that is,   # Ð Ñ # # Ð#ß "Ñ P P œ ##"

  add  row  to row 3, so use “ ” as the  entry in : that is,  Ð #Ñ Ð$ß #Ñ P P œ% % %
$ $ $$#

 

      Now we have 
*

P œ
 
 
" ! !
# " !

"%
$

   Fill in the rest of  with 's to getñ P ! ß
   

  the same as we got by multiplying elementary matricesP œ
 
 
" ! !
# " !

! "
ß

%
$



Example 2 In this example,  is not square and is a little larger.  But, except for thoseE
differences, everything is quite similar to Example 1.

If possible, find an  factorization of  and use it to solvePY E œ
" ! $ ! # "

 # !  "  # ) $
 " !  "  " $ "

 
 

E œ œB ,
 
 

 "
#
$

E œ µ
" ! $ ! # " " ! $ ! # "

 # !  "  # ) $ ! ! &  # "# &
 " !  "  " $ "  " !  "  " $ "

   
   

   µ µ œ Y
" ! $ ! # "
! ! &  # "# &
! ! #  " & #

" ! $ ! # "
! ! &  # "# &

! ! !  !

   
   " "

& &

Y  is in echelon form, and no rescaling or row swaps were used in the row reduction.

To find  start with .  The row operations used wereP À P œ
" ! !
‡ " !
‡ ‡ "

 
 

        

add * row  to row 

add * row  to row and these give us that 

add row  to r


 
 

# Ð "Ñ Ð #Ñ

" Ð "Ñ Ð $Ñ P œ

" ! !
 # " !

 " "

 Ð #Ñ Ð

#
&

#
& ow 

 So we have

$Ñ

Þ

            P Y

E œ œ
" ! $ ! # "

 # !  "  # ) $
 " !  "  " $ "

" ! ! " ! $ ! # "
 # " ! ! ! &  # "# &

 " " ! ! !  !

    
    # " "

& & &

We can solve  by writingE œ œB ,
 
 

 "
#
$

       



    
    

 
 


P

" ! !
 # " !

 " "

C  "
C #
C $

" ! $ ! # "
! ! &  # "# &

! ! !  !

C , , œ

C B

œ œ

œ Y ß

,   that is

that is 

 
#
&

"

#

$

" "
& &

       


 
 

B
B
B
B
B
B

C
C
C

"

#

$

%

&

'

"

#

$

œ



The first equation gives , and  then the secondC œ
     
     
C  "
C !
C #

œ œ

 "
#  #ÐC Ñ

$  C  C

"

#

$

"

" #
#
&

equation becomes .  So the solution is
   
   

        

"
&



! $ ! # "
! !  # "# &

! ! ! !

B
B
B
B
B
B

 "
!
#"

&
"
&

"

#

$

%

&

'

œ

B œ

                                                        

B ""  %B  #B "" !
B B ! "
B  #B  B  %  % !
B B  "!  "! !
B B ! !
B B !

œ œ  B

" & '

# #

$ & '

% &

& &

' '

#

! ! "

 B  B

% #
! !

 #  "
" !
" !

& '

                        

Slight Variations on the  DecompositionPY

PHY decompositions   If we accept a slightly more complicated factorization and only a tiny
bit more work, we can also arrange that  has only 's in the pivot positions.  Since  is Y " P unit
lower triangular, this introduces more symmetry in appearance between  and .  (P Y For example:
if  is square and happens to be invertible, then  will be  upper triangular why?E Y unit )  But
frankly, this nicer appearance really doesn't contribute much to solving the system of equations.

Starting with  just factor from the rows of  the numbers that are in pivot positions.E œ PYß Y
Make these numbers the entries in the  .  If a row of  has no pivot position,diagonal matrix H Y
then “factor out” a and put it on the diagonal of .  Then , which is cleverly called! H E œ PHY
an  decomposition of PHY EÞ  Here's an illustration using the matrices from Example 2.

                 P Y

E œ œ
" ! $ ! # "

 # !  "  # ) $
 " !  "  " $ "

" ! ! " ! $ ! # "
 # " ! ! ! &  # "# &

 " " ! ! !  !

    
    

 

# " "
& & &

œ

" ! ! " ! ! " ! $ ! # "
 # " ! !

 " " 
! ! "  "

! ! ! "  " !

   
   # "

& &

# "#
& &

0 5
0 0

œ P H Y   
               Å
               matrix, so we shouldn't really givethis new is a Y
it the same name as the original matrix . But we will do so just because it is the standard nameY
for the last  matrix in an “  decomposition.”  Here  “original ” “new matrix ”)PHY Y œ HÐ Y

This always works because when computing , each diagonal entry in  just multiplies theHY H
corresponding row in  ( check! ).Y



Related decomposition   Sometimes row interchanges are simply unavoidable to reduce  toE
echelon form. Other times,  they could be avoided, even when row interchanges are introduced in
computer computations to reduce roundoff errors (see the Numerical Note about partial pivoting
in the text on p. 17). So what happens if row interchanges are used?  We can still get a
factorization similar to  and just as useful.  Here's how.E œ PY

1) Look at the steps needed to row reduce  to echelon form and see what rowE Y
interchanges will be used. Then go back and “repackage” :  E do all these row interchanges
first.  The result is “  with some rows interchanged.”   Look at this in more detail:E

Suppose the row interchanges we use are represented by the elementary matrices
I ß ÞÞÞß I Þ E" 5  Then the “repackaged” matrix  with some rows interchanged” is just
I † ÞÞÞ † I E œ TE T œ I † ÞÞÞ † I5 " 5 ", where .

Since  we see that  is just the final result of performingT œ I † ÞÞÞ † I œ I † ÞÞÞ † I M T5 " 5 "

the same row interchanges on that is,  is just “  with some rows rearranged.”   isM  T M T
called a permutation matrix;  the multiplication  permutes (“rearranges”) the rows ofTE
E M T in exactly the same way that the rows of  were permuted to create .  Such a matrix
T " " will always be a square matrix with exactly one  in each row and exactly one  in
each column.

Every permutation matrix  is invertible  (because it is a product of elementary matrices,T
which are invertible).    is also a permutation matrix, andT œ" I † ÞÞÞ † I"

" "
:

T TE œ E T TE" ".  This equation says that  rearranges the rows of to restore the
original matrix .   (E If you know the steps to write down , it's just as easy to write theT
matrix . Or, perhaps you can convince yourself that T œ I † ÞÞÞ † I T œ T Þ" " " " X

" : )

2) Having done the need row swaps, we can row reduce  to echelon form  usingTE without
any row interchanges, so we can use our previous method to get an  decomposition ofPY
TE À
     TE œ PY Ð‡‡‡Ñ

3) Then .      is called a , meaningE œ ÐT PÑY T P" " permuted lower triangular matrix
“lower triangular with some rows interchanged.”   MATLAB Help gives  the cute nameT P"

“p l ” a term never seen anywhere else to mysychologically ower triangular matrix,
knowledgeÞ

This is just as useful as the  decomposition.  For example, we can solvePY
E œ œ œ Y ÐT PÑ œB B , C B C ,ÐT PÑY" by first substituting .  Solving is just as easy"  
as when the coefficient matrix is lower triangular.



For example if this equation were

permuted lower triangular  
à

  we would simply imitate forward substation,

                
# " ! ! C !
" ! ! ! C "
# # " " C "
" " " ! C !

œ

"

#

$

%

but solve using the rows in the order that (rearranged) would make a lower triangular
matrix.  That is,

   

,                                      from the second row, then
,                from the first row, th


C œ "
C œ !  #C œ  #
"

# " en
,              from the fourth row, then

,  from the third row
C œ !  C  C œ "
C œ "  #C  #C  C œ #
$ " #

% " # $

    (In  books or applications, when you see  it may even be assumed that  is some E œ PY P
    permuted lower triangular rather than lower triangular.)

OR to solve you can reason as follows:E œ œB B ,ÐT PÑY" , 

       Notice that the equation TE œ T E œB , B , has exactly the same solutions as .

Because: If  is true, then multiplying both sides by  shows that TE œ T TB , B "

is also a solution  also, and vice-versa.   EB œ , If you think in terms of writing
out the linear systems of equations:  is the  system of equationsTE œ TB , same
as but with the equations listed in some other interchanged orderE œB ,
determined by the permutation matrix .T

And since we have an  decomposition solving  forPY ß TE PY œ Tfor TE B œ B ,
B is easyÞ

Example 3  Let E œ

    
" " #
" " "
" % %
! " "

Þ

1) On scratch paper, do enough steps row reducing  to echelon form (E no row rescaling allowed,
and, following standard procedure, only adding multiples of rows to lower rows  ) to see what row
interchanges, if any, are necessary.  It turns out that only one, interchanging rows 2 and 4 at a
certain stage, was necessary.

2) So go back to the start and perform that row interchange first, creating



TE œ T œ

" " # " ! ! !
! " " ! ! ! "
" % % ! ! " !
" " " ! " ! !

            
, where 

3) Row reduce  to an echelon form , keeping track of the EROs used:TE Y

                            
" " # " " # " " # " " #
! " " ! " " ! " " ! " "
" % % ! $ ! $ ! ! 
" " " " " " ! !  " ! !  "

µ µ µ
Ð"Ñ Ð#Ñ Ð$Ñ

2 2 1

   
1

µ œ Y
Ð%Ñ

" " #
! " "
! ! 
! ! !

    
The row operations were  (1) add row(1) to row 3 "‡
    (2) add row(1) to row 4 "‡
    (3) add 3 row(2) to row  ‡ $
    add 1*row(3) to row 4Ð%Ñ 

Using the method described earlier for “finding  efficiently” we can write down  step by stepP P
as we do the row reduction of TE À

   

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
* 1 0 0 * 1 0 0 * 1 0 0 * 1 0 0
* * 1 0 * 1 0 * 1 0 1 0
* * * 1 * * * 1 * * 1 1

                            
Ä Ä Ä

" " " $
" " ‡ ‡

  Ä Ä œ P

" ! ! ! " ! ! !
‡ " ! ! ! " ! !
" $ " ! " $ " !
" ‡ " " " ! " "

            
Then                          TE œ P Y

  
1

                    
" " # " ! ! ! " " #
! " " ! " ! ! ! " "
" % % " $ " ! ! ! 
" " " " ! " " ! ! !

œ



To solve write           E ß TE œ PY Ð

# #
" (
$ $
( "

B B B , œœ œ T

            
rows 2,4 of  , interchanged, as

for  earlier .   E Ñ PY œWe then solve B

    
#
(
$
"

in the same way as before

For those who use MATLAB

If you create a  matrix , and then enter the MATLAB commandsquare E

 lu (A)   ( “ lu” is lowercase in MATLAB )ÒPß Y ß T Ó œ

then MATLAB returns to you

  1)  a square unit lower triangular P
  2)  a square  in echelon form, andY
  3)  a permutation matrix T

for which .   TE œ PY If it's possible simply to factor  then MATLABE œ PYß
             just gives the identity matrix,T œ M œ

Our earlier work doesn't require  to be square, but the MATLAB command “lu” only worksE
when  is squareE .


