
Practice with Equivalence Relations
The Algebraic Systems ™7

Definition  Suppose For integers , we say that7 − Þ Bß C − ™

 “  is congruent to modulo ” iff B C 7 7lÐC  BÑ
             iff (equivalently   is a multiple of  in Ñ C  B 7 ™

We usually write this relation as although notations like mod ,B ´ C Ð B œ C Ð 7Ñ7

         mod , and  are also used .B ´ C Ð 7Ñ B œ C Ñ7

We proved in class that is an equivalence relation on .  Any two different equivalence´ 7 ™
classes are disjoint, and the union of the distinct equivalence classes is therefore we say that™
the collection of equivalence classes is a partition of .™

We also proved in class that  and  are in the same equivalence class iff they have the sameB C
remainder or  when divided by .  This means that the relation  has Ð< œ !ß "ß ÞÞÞß 7  "Ñ 7 ´ 77

different equivalence classes:  Ò!Óß Ò"Óß ÞÞÞß Ò7  "ÓÞ

Example Ð7 œ %Ñ     iff  is a multiple of  .  Since “division by ” has  possibleB ´ C C  B % % %4

remainders, every  is congruent mod  to either  or .B − ^ % !ß "ß # $

 Ò!Ó œ Ö ÞÞÞ ß  "#ß  )ß  %ß !ß %ß )ß "#ß ÞÞÞ ×
 Ò"Ó œ Ö ÞÞÞ ß  ""ß  (ß  $ß "ß &ß *ß "$ß ÞÞÞ ×
 Ò#Ó œ Ö ÞÞÞ ß  "!ß  'ß  #ß #ß 'ß "!ß "%ß ÞÞÞ×
 Ò$Ó œ Ö ÞÞÞ ß  *ß  &ß  "ß $ß (ß ""ß "&ß ÞÞÞ×

Recall that there are also other notations for equivalence classes:  for example andÒ"Óß " ß


"Î ´ Þ%  all refer to the same equivalence class

Of course  are all names for the sameÒ  ""Ó œ Ò  (Ó œ Ò  $Ó œ Ò"Ó œ Ò&Ó œ Ò*Ó œ ÞÞÞ
equivalence class.  The equivalence relation “lumps together” all these equivalent numbers´ 4

ÞÞÞ ß  ""ß  (ß  $ß "ß &ß *ß ÞÞÞ   and treats them as a single new object an equivalence class
(that has many different names).  Each integer  ... ... is called aß  ""ß  (ß  $ß "ß &ß *ß
representative of that equivalence class.

The collection of all equivalence classes of is denoted .  So  is a collection of sets:´ 7 7 7™ ™
™ ™7 %œ Ö Ò!Óß Ò"Óß ÞÞÞß Ò7  "Ó ×Þ œ ÖÒ!Óß Ò"Óß Ò#Óß Ò$Ó ×  For example, .

It's useful to spend a little time thinking about these collections  to get some practice working™7

with equivalence relations and equivalence classes.  But it turns out that the 's  also are™7

interesting algebraic systems.

To create some “algebra” in , we will define two operations called “addition modulo ” and™7 7
“multiplication modulo .”   For now, we will denote these operations by  and  to avoid7 Š 
confusing them with the usual addition and multiplication in .™



Definition  Suppose  In the set , define7 − Þ ™7

 i)   (Addition modulo )ÒBÓ Š ÒCÓ œ ÒB  CÓ 7
 ii)  (Multiplication modulo )ÒBÓ  ÒCÓ œ ÒB † CÓ 7

Ð Ñthe operations  and on the right are the usual addition and multiplication in . † ™

For example, in ™% œ ÖÒ!Óß Ò"Óß Ò#Óß Ò $Ó×

  
 and
 

Ð‡Ñ
Ò#Ó Š Ò$Ó œ Ò&Ó œ Ò"Ó
Ò#Ó  Ò$Ó œ Ò'Ó œ Ò#Ó

In other words, we add ( ) equivalence classes by picking a representative of each class Š Ð#ß $
above), adding the representatives in  (to get ), and then taking the equivalence class ofÐ  Ñ &™
the sum to get   We also multiply equivalence classes by choosing a representative fromÐ Ò&Ó ÑÞ
each equivalence class.

This raises an important issue:  how do we know that the answer for a sum  orŠ
product doesn't depend on which representatives are chosen?  For example, if “addition”  is Š
to make any sense,  should always give the same answer, even if somebody does theÒ#Ó Š Ò$Ó
calculation in a different way.  For example, suppose Joe reasons in :™%

   andÐ‡‡Ñ Ò#Ó œ Ò"%Ó
   Ò$Ó œ Ò(Ó
  so Joe computes:     and#Ó Š Ò$Ó œ Ò"%Ó Š Ò(Ó œ Ò#"Ó
                        Ò#Ó  Ò$Ó œ Ò"%Ó  Ò(Ó œ Ò*)Ó œ Ò#Ó
 
Fortunately,  and  so the answers in   and  Ò#"Ó œ Ò"Ó Ò*)Ó œ Ò#Ó Ð‡Ñ Ð‡‡Ñ are the same.

But will it always work out this way?  Are the results of addition ( ) or multiplication ( )Š 
always the same, whatever representatives from the equivalence classes are actually used in the
calculations?  The next theorem tells us the answer is “yes.”

Theorem  Suppose  and If 7 − +ß ,ß -ß . − Þ + ™ ´ , - ´ .7 7 and , then

  i)  +  - ´ ,  .7

  ii) +- ´ ,.7

Phrased in terms of equivalence classes for , the theorem says that if  and ,´ Ò+Ó œ Ò,Ó Ò-Ó œ Ò.Ó7

then
  i) Ò+  -Ó œ Ò,  .Ó
  ii) Ò+-Ó œ Ò,.Ó

In other words if you calculate  using  and  as the representatives for the equivalenceÒ+Ó Š Ò-Ó , .
classes, you get the same answer as when you use  and :  .  And similarly for+ - Ò+  -Ó œ Ò,  .Ó
multiplication.



Proof  By hypothesis,  and  for some integers ,  + œ 57 .  - œ 67 5ß 6Þ

Then  i) , soÐ,  +Ñ  Ð.  -Ñ œ Ð,  .Ñ  Ð+  -Ñ œ 57  67 œ Ð5  6Ñ7
 
     +  - ´ ,  .Þ7

And ii) ,.  +- œ ,.  ,-  ,-  +- œ ,Ð.  -Ñ  -Ð,  +Ñ
  , soœ ,Ð67Ñ  -Ð57Ñ œ 7Ð,6  -5Ñ

    +- ´ ,.Þ ñ7

Mathematicians say that this theorem shows that  and are Š  well defined-  meaning
“independent of the representatives used from the equivalence classes.”  A theorem like this one
needs to be proved every time a definition is given in terms of representatives chosen from
various equivalence classes.

Example Suppose, in , we “define” iff  ™% ÒBÓ  ÒCÓ B  CÞ

 Then John might say:   is true, because Ò#Ó  Ò$Ó #  $
 And Mary might say:   is false, because Ò'Ó  Ò$Ó ' Î $Þ

But this is a real problem,  !because Ò#Ó œ Ò'Ó

This “definition” for a relation  between equivalence classes in  is  ™7 not an acceptable
definition depends because it  on which representatives are chosen for the equivalence classes: in
other words,   is   well-defined in .  ( not ™ Sometimes “ill-defined” is used for “not well-
defined).

Corollary  Suppose    If , then 7ß8 − Þ + ´ , + ´ , Þ 7 7
8 8

Proof  A complete proof would be done by induction.  You can see the idea of how it works here.

 We know that  If we multiply, the theorem gives  + ´ ,
+ ´ ,

+ ´ , Þ7

7

# #
7

 From            If we multiply, the theorem gives  
  + ´ ,

+ ´ ,
+ ´ , Þ

# #
7

7

$ $
7

 Etc. “complete the argument by induction”)    Ð œ ñ



Example  Find the remainder when  is divided by . Phrased another way:  which# '$(%

equivalence class in  contains the integer ?™'$
(%œ ÖÒ!Óß Ò"Óß ÞÞÞß Ò'$Ó× #   

We know that .  Therefore# œ '% ´ "'
'$

 so# œ Ð# Ñ ´ Ð"Ñ ´ "ß(# ' "# "#
'$ '$

 # œ # Ð# Ñ ´ # Ð"Ñ ´ %Þ(% # ' "# #
'$ '$

So has remainder 4 when divided by 63;  equivalently, 2# − Ò%Ó − Þ(% (%
'$

 ™

(Note: in writing down such a calculation, be sure to distinguish when you mean “ ” and whenœ
you mean  in particular, don't write “ ” when the truth is  “ ”.´ à7 + œ , + ´ ,7

Example  What is the remainder  when  is divided by 17?< #$!

Of course,   Trying to simplify, we “reduce modulo 17” as much as we! Ÿ <  "(Þ
can replacing numbers with smaller, more manageable numbers (mod .   "(Ñ

Noting that  we write # ´ Ð  "Ñß # œ # # œ # Ð# Ñ ´ # Ð  "Ñ œ  %Þ% $! # #) # % ( # (
"( "(

But , so   So  has a remainder of 3 when divided by 17 % ´ "$ # ´ "$Þ # " Þ"( "(
$! $!

Example  With the operations and , we can do “arithmetic” in  We can easily write outŠ  Þ™7

the complete addition and multiplication tables in  for example™% À

 

[0]
[3] [0]

       

Š Ò!Ó Ò"Ó Ò# Ò$Ó Ò!Ó Ò"Ó #Ó Ò$Ó

Ò!Ó Ò!Ó
Ò"Ó Ò"Ó
Ò#Ó Ò#Ó
Ò$Ó

Ó  Ò

Ò!Ó Ò"Ó Ò#Ó Ò$Ó Ò!Ó Ò!Ó Ò!Ó Ò!Ó
Ò"Ó Ò#Ó Ò$Ó Ò!Ó Ò"Ó Ò#Ó Ò$Ó
Ò#Ó Ò"Ó Ò
Ò$Ó Ò!Ó Ò"Ó Ò#Ó

!Ó Ò#Ó Ò!Ó Ò#Ó
Ò!Ó Ò$Ó Ò#Ó Ò"ÓÒ$Ó       

Example Arithmetic in  is often referred to as “clock arithmetic.”  Why?™"# œ ÖÒ!Óß Ò"Óß ÞÞÞß Ò""Ó×

“Algebraic system” is a loose, general term for a set that has with one or more operations (called
addition or multiplication) that work inside the set. Familiar examples of algebraic systems are ,
=  ‘ ‚, and  (the complex numbers). But now we also have examples of infinitely many otherß ß
algebraic systems one for each™ 7  7 − Þ

Why is , the set of irrationals, not an algebraic system with addition and multiplication?



We want to spend a little more time examining the algebraic structures , but first we are going™7

to digress to look, more generally, at two sets axioms that apply to a lot of “nice” algebraic
systems.  (Actually, the second set of axioms is the same as the first with just one
more axiom added.   From these axioms, we can prove theorems about “how to do algebra” in
these systems. The beauty of this approach is that the theorems we are true in  algebraicevery
system for which the axioms are true. So efficiency is one reason for the digression.

The axioms in the first set are numbered F1, F1 , ..., F5, F5 , F6.  They are all true whenw w

interpreted as statements about any of the algebraic systems and  (for ™  ‘ ‚ ™ß ß ß ß 7 every
7 − ). Any definitions we make or theorems we prove from these axioms apply equally well in
every one of these algebraic systems.  So, for example, we don't have to waste time proving
results about “how algebra works” separately for each of the systems        ,™ ™ ™ ™# $ % &ß ß ß ß ÞÞÞ
™'''ß ÞÞÞ .

To state the axioms, suppose that we have an algebraic system that consists of a set  and twoJ
operations called addition and multiplication defined inside . In stating the axioms theseJ
operations are written as  and but in a specific example other symbols (such as  and † ß Š 
in ) might be used instead.  Notice that several of the axioms come in “pairs” one part for™7 
addition, the other for multiplication.

F1)  There are elements  and  (and ! − J " − J ! Á "Ñ
 ( )so the system has at least two elements

F2      F2  )Ñ aB aC aD ÐB  CÑ  D œ B  ÐC  DÑ Ñ aB aC aD ÐB C D œ B ÐC DÑw † † † †
    ( )addition and multiplication are associative

F3               F3Ñ aB aC B  C œ C  B Ñ aB aC B C œ C Bw † †
        ( )addition and multiplication are commutative

   F4     Ñ aB aC aD B ÐC  DÑ œ B C  B D† † †
        ( )the distributive law connects addition and multiplication

F5                  F5 )  Ñ aB B  ! œ B aB B † " œ Bw

 (0 and 1 are “neutral” elements for addition and multiplication.   is called the!
  and  is called the  in additive identity element multiplicative identity element" J )

Notice that all of the axioms, so far, are satisfied in the system of whole numbers
= =œ Ö!ß "ß #ß ÞÞÞ ×Þ  † This is because of how we defined  and  in  , and
because of theorems we proved in   (such as commutativity and associativity for=
addition and multiplication). This means that any theorem we prove using just
the Axioms F1-F5  would be valid theorems about  or any other algebraicw =
system satisfying these axioms.  (However, some of the axioms F1-F5  are w not
true in which ones are not true in ?  )

F6)     ( )aB bC B  C œ ! such a  is called an  of C Badditive inverse

= ™  ‘ ‚ does  satisfy Axiom 6, but each of  satisfies  these axioms, andnot allß ß ß
we will see that the same is true for every ™7ß



(At this point, we have not given a rigorous construction of the sets ;™  ‘ ‚ß ß ß
so the preceding statement refers to the “informal” systems of integers,
rationals, reals, and complex numbers.  For the moment, you should consider the
axioms (as far as  are concerned ) as a small number of statements™  ‘ ‚ß ß ß
that you believe are true, and consider the definitions and theorems below as
showing how the rest of the “rules of algebra” for these systems follow from this
small set of assumptions.)

When the number system  is constructed carefully as a formal system (we will™
do this very soon) then in that system we can prove that each of Z1-Z5 and Z6 isw

true.  The rest of the algebraic rules that work in  can then be proved from™
these.  The same applies to , , and . ‘ ‚

Example  For every , the algebraic system  satisfies all of the Axioms F1-F5  & F6.7 −  ™7
w

( .  We will not actuallyFor now, we continue to refer to the operations in by  and™7  Š  Ñ
check every axiom here, but illustrate how they are verified through a few examples.  Roughly,
each axiom is true in  because we already know it is true in ™ ™7 Þ

 Proof of F2  in     w
7™ Suppose Then ÒBÓß ÒCÓß ÒDÓ − Þ ÐÒBÓ  ÒCÓÑ  ÒDÓ œ ÒBCÓ  ÒDÓ™7

œ ÒÐBCÑDÓ œ ÒBÐCDÑÓ œ ÒBÓ  ÒCDÓ œ ÒBÓ  ÐÒCÓ  ÒDÓÑÞ ñ   
    Å

because multiplication  is associative  this is the key toin ™ : 
 getting associativity for multiplication in ™7

 Suppose .  Then  Proof of F4 in    ™7 ÒBÓß ÒCÓß ÒDÓ − ÒBÓ  ÐÒCÓ Š ÒDÓÑ œ ÒBÓ  ÒC  DÓ™7

    œ ÒBÐC  DÑÓ œ ÒBC  BDÓ œ ÒBCÓ Š ÒBDÓ œ ÒBÓ  ÒCÓ Š ÒBÓ  ÒDÓÞ ñ
     Å

                  because the distributive law holds in : this is the key to getting the™
 distributive law to work in ™7

  Suppose    Let  be the integer .   Then Proof of F6 in  ™7 ÒBÓ − C 7  B ÒCÓ − ^™7 7

 and

     ÒBÓ Š ÒCÓ œ ÒB  CÓ œ ÒB  Ð7  BÑÓ œ Ò7Ó œ Ò!ÓÞ ñ

As an exercise, you should verify that the remaining F1-F5  & F6 hold in every w
7™ Þ



We now look at a few definitions and theorems that we can prove from Axioms F1-F5  & F6.w

All of them apply equally well in and also in  the systems .™  ‘ ‚ ™ß ß ß ß all 7

The following theorems and definitions all refer to a  algebraic system8
W   that satisfies Axioms F1 F5  & F6 w

This hypothesis is not repeated in each theorem below but it is assumed.

Theorem 1  ÐaBÑÐb CÑ B  C œ !!  

Proof   (Axiom F6 guarantees that  exists; the new information in the theorem is that  isC C
unique. Theorem 1 says that each  has a unique additive inverse.B )  The proof will be a
homework exercise.

 

Definition 2   If , then the unique  for which  is denoted by . B − W C B  C œ !  B

Definition 3   We define  in  as follows: subtraction W

   for ,  means ?ß @ − W ?  @ ?  Ð  @ÑÞ

So, by definition: .B  B œ B  Ð  BÑ œ !

Theorem 4   If , then B − W B † ! œ !

Proof    (Axiom F5)B † ! œ BÐ!  !Ñ
    (Axiom F4 distributive axiom)œ B † !  B † ! 
so
 B † !  Ð  ÐB † !ÑÑ œ ÐB † !  B † !Ñ  Ð  ÐB † !ÑÑ

so     (using def. of  and! œ B † !  !  ÐB † !Ñ
         Axiom F2 associativity)
so     (Axiom F5)! œ B † !
    



Theorem 5   (   Various “sign rules”)  For all Bß Cß D À

 i)     ÐB  CÑ œ  B  C
 ii)    Ð  BÑ œ B
 iii)      Ð  BÑC œ  ÐBCÑ
     )Notice that, for  iii) says that B œ "ß Ð  " † C œ  Ð" † CÑ œ  C
 iv)      BÐ  CÑ œ  ÐBCÑ
 v)      Ð  BÑÐ  CÑ œ BC
 vi)     BÐC  DÑ œ BC  BD

Proof   i) The proof will be a homework exercise.
 
   

 
 ii) By definition,  is the unique  that satisfies the equation: Ð  BÑ D

   Ð  BÑ  D œ !Þ

 Check that satisfies the equation:   B Ð  BÑ  B œ ! Ðby definition of  BÑ
 so  Ð  BÑ œ BÞ

 iii) By definition,  is the unique  that satisfies the equation ÐBCÑ D

   BC  D œ !Þ

 Notice that  satisfies the equation:D œ Ð  BÑÐCÑ

                (Axiom F3 commutativity forBC  Ð  BÑC œ CB  CÐ  BÑ w

               multiplication)
                 (Axiom F4 distributive axiom)œ CÐB  Ð  BÑÑ 
        (definition of œ C † !  BÑ
        Theorem 4œ !
 so . BC œ Ð  BÑC

 iv) Exercise: similar to iii)
 



 v       (by part iii)Ñ Ð  BÑÐ  CÑ œ  ÐBÐ  CÑ
       (by part iv)œ  Ð  BCÑ
        (by part ii)œ BC

 vi)      (def. of subtraction)BÐC  DÑ œ BÐC  Ð  DÑ
                        (distributive axiom)œ BC  BÐ  DÑ
             (by part iv)œ BC  Ð  BDÑ
             (def. of subtraction)œ BC  BD
   

Theorem 6  (Cancellation for addition)  For all :   if ,  then Bß Cß D B  C œ B  D C œ DÞ

Proof  If , then Using associativity, we getB  C œ B  D Ð  BÑ  ÐB  CÑ œ Ð  BÑ  ÐB  DÑÞ
that , so  !  C œ !  D C œ DÞ ñ

Example: Algebra in ™'

As we said earlier, all the preceding definitions and Theorems 1-6 apply in  and ™  ‘ ‚ ™ß ß ß 7

Ð 7 − Ñfor every .

Here are some illustrations in  ™' œ Ö Ò!Óß Ò"Óß Ò#Óß Ò$Óß Ò%Óß Ò&Ó ×Þ

To simplify notation: we have had enough practice by now to realize that addition and
multiplication in  are different operations from addition and multiplication in .  Therefore it™ ™7

should be safe to refer to them as  and  rather than using the clumsy  and . These symbols † Š
which were introduced at the beginning to avoid confusion with the addition and multiplication
operation in .  Hereafter, the context determines which operations “ " and “ ” refer to.™  †

 There is a unique  in  such that , namely,   We say that andD Ò#Ó  D œ Ò!Ó D œ Ò%ÓÞ Ò#Ó™'

  are additive inverses (for each other) in ; therefore we write andÒ%Ó  Ò#Ó œ Ò%Ó™'

  Ò%Ó œ Ò#ÓÞ

 Similarly,  and  Ò!Ó œ Ò!Óß  Ò"Ó œ Ò&Óß  Ò$Ó œ Ò$ÓÞ

 Therefore we have the following subtraction examples:

     Ò#Ó  Ò%Ó œ Ò#Ó  Ð  Ò%ÓÑ œ Ò#Ó  Ò#Ó œ Ò%Ó

  Ò&Ó  Ò$Ó œ Ò&Ó  Ð  Ò$ÓÑ œ Ò&Ó  Ò$Ó œ Ò#Ó

   Ò$Ó  Ò&Ó œ Ò$Ó  Ð  Ò&ÓÑ œ Ò$Ó  Ò"Ó œ Ò%Ó

 
  OR

 ÐÒ"Ó  Ò&ÓÑ œ
 Ò"Ó  Ò&Ó œ  Ò"Ó  Ð  Ò&ÓÑ œ  Ò"Ó  Ò"Ó œ Ò!Óß
 Ò'Ó œ  Ò!Ó œ Ò!Ó

 
( )         OR
( )

Ð  Ò#ÓÑÐ  Ò%ÓÑ œ
Ò%ÓÒ#Ó œ Ò)Ó œ Ò#Ó
Ò#ÓÒ%Ó œ Ò)Ó œ Ò#Ó using that , etc

using that 
 Ò#Ó œ Ò%Ó
Ð  BÑÐ  CÑ œ BC



  Ð  Ò#ÓÑÒ$Ó  Ò&ÓÐÒ"Ó  Ò#ÓÑ œ  Ò'Ó  Ò&ÓÒ"Ó  Ò&ÓÒ#Ó œ Ò!Ó  Ò&Ó  Ò"!Ó
   œ Ò&Ó  Ò#Ó œ Ò"Ó

 The equation  can be solved by subtracting  from both sides:D  Ò&Ó œ Ò#Ó Ò&Ó

             D œ Ò#Ó  Ò&Ó œ Ò#Ó  Ð  Ò&ÓÑ œ Ò#Ó  Ò"Ó œ Ò$Ó

 However, there are also  some peculiarities in the algebra of ™' À

   even though neither factor is Ò#ÓÒ$Ó œ Ò!Ó Ò!ÓÞ

  There is no solution for the equation Ò#ÓA  Ò"Ó œ Ò%ÓÞ
   
   We can simplify by subtracting from both sides to getÒ"Ó
 
          (*)Ò#ÓA œ Ò$Ó

   But there is no value of  that works (try all possible valuesA À
    )A œ Ò!Óß ÞÞÞß Ò&Ó x

   In general, if a linear equation like  +ß ,ß - − ß +A  , œ -™' might
    have a solution for .  (not A It depends on the choice of  can you+ß ,ß - À
   create an equation of this form that  have a solution in ?does ™' )

  We  be able to solve the equation (*)  an element   would if there were = − ™'

  for which [2] for then we could write= † œ Ò"Ó  À

     Ò#ÓA œ Ò$Ó
     ( )  = † Ò#Ó A œ = † Ò$Ó
.     " † A œ = † Ò$Ó
      A œ = † Ò$Ó

  Similarly,  such an element the equation  wouldif there were = − Ò#ÓÒ$Ó œ Ò!Ó™'

  be impossible because that would mean ( , so that = † Ò#ÓÑ † Ò$Ó œ = † Ò!Ó
             ll
       Ò$Ó œ Ò"Ó † Ò$Ó œ Ò!ÓÞ

  The peculiarities of these particular examples arise because there is   in no = ™'

  for which  that is,  does not have a “multiplicative inverse”= † Ò#Ó œ Ò"Ó  Ò#Ó
  in .  ™' Which elements in   have a “multiplicative inverse?”™' do

The strange behaviors observed in the algebra of   can occur in for  values of ™ ™' 7 many 7 
but not all, as we will see below.



Fields

“Abstract Algebra” (such as Math 430) is devoted to the study of various algebraic systems.
These systems  have names like groups, rings, and fields.  A system satisfying the AxiomsW
F1 F5  & F6 is called a but you don't need to remember w commutative ring with a unit (1)
that name.

Fields are especially important algebraic systems. A field satisfies all the axioms F1 F5 F6 ßw

plus  F6 and when F6  is also true in an algebraic system, it rules out theone additional axiom w w
strange algebraic behaviors we saw in a system like ™'Þ

Axiom F6   w ÐaBÑ B Á ! Ê ÐbCÑ C † B œ "     (such a  is called a  for ).C Bmultiplicative inverse

Definition  An algebraic system satisfying all the axioms F1 F6  is called a .J  w field

It was because of this definition that we used the letter “F” in labeling the axioms:  F1 F6  are w

“the field axioms.”

Example  i) Each of the (informal) algebraic systems  a field.  However,   a ‘ ‚ ™ß ß is is not
field because Axiom 6  is not true in .  (w ™ In fact, only a very few elements of  have a™
multiplicative inverse: which ones?)

    ii)   .  It satisfies all of the field axioms  F6  for example, ™'
wis not a field except À Ò#Ó

has no multiplicative inverse in ™'Þ

   iii)  .   Like  it satisfies Axioms F1-F5  & F6.  Also,  has only™ ™ ™$ 7 $
wis a field every ß

two nonzero elements,  and  and each has a multiplicative inverse in :  Ò"Ó Ò#Ó Ò"Ó † Ò"Ó œ Ò"Ó™$

and .  Therefore  also satisfies Axiom F6 .Ò#Ó † Ò#Ó œ Ò"Ó ™$
w

Because every field satisfies Axioms F1-F5  & F6, all of   definitions and theorems inJ w preceding
this section are true in every field.  But because fields satisfy, in addition, the Axiom F6 , we canw

prove some additional theorems about algebra in a field.



Theorem 7  Suppose  is a field.  Then J ÐaBÑ ÐB Á ! Ê ÐbxCÑ C † B œ "Ñ

Proof   (Axiom F6  guarantees that  exists; the new information in the theorem is that  isw C C
unique. So Theorem 7 says that each  has a unique multiplicative inverse.B )

 Suppose and that      and B Á ! C † B œ " D † B œ "
 
 Then    (Axiom F5 )D † ÐC † BÑ œ D † " œ D w

 so          Commutative and associativeÐD † BÑ † C œ D
        axioms for multiplication
                so " † C œ D
 so       (Axiom F5 )C œ D ñw

Definition 8  If  is a nonzero element in a field , then the unique  for which B J C C † B œ "
is denoted by B Þ"

Definition 9  We define  in a field  as follows:division J

   for  and ,  means Bß C − J B Á ! C † B ÞC
B

"

Here are a couple of the most important theorems related to “doing algebra” in a field (such as
 ‘ ‚ ™ß ß Þ, or )$

Theorem 10 (Cancellation Rule for Multiplication in a Field) Suppose  is a field and thatJ
Bß Cß D − J Þ B Á ! BC œ BD C œ DÞIf  and , then 

Proof   BC œ BD Ê B ÐBCÑ œ B ÐBDÑ Ê ÐB BÑC œ ÐB BÑD " " " "

   Ê " † C œ " † D Ê C œ DÞ ñ

Theorem 11  In any field, if , then either  or BC œ ! B œ ! C œ !Þ

Proof  A homework exercise.

Theorem 12  Suppose  is a field that  and that Then the linear equationJ ß +ß ,ß - − J + Á !Þ
+B  , œ - J has a unique solution in .

Proof  If , then adding  to both sides “subtracting from both sides” gives+B  , œ -  , Ð œ , Ñ
+B œ -  ,Þ + œ +  Then dividing both sides by  ( “multiplying both sides by ”) gives"

B œ + Ð-  ,Ñ œ Þ ñ" -  ,
+



Example: Algebra in the field   ™&  The algebraic system  is a field.  To check Axiom F6 ,™&
w

simply note that

 (since  Ò#Ó œ Ò$Ó Ò$Ó † Ò#Ó œ Ò"Ó Ñ Ò"Ó œ Ò"Ó" "

 [     $Ó œ Ò#Ó Ò%Ó œ Ò%Ó" "

Any algebraic manipulation that we could do in (above) is also legitimate or any other™ ™' & Ð
™7 Ñ.  But we can also do new things:

 divided by Ò#Ó Ò$Ó œ œ Ò#Ó † Ò$Ó œ Ò#Ó † Ò#Ò œ Ò%ÓÒ#Ó
Ò$Ó

"

  divided by Ò$Ó Ò#Ó œ œ Ò$Ó † Ò#Ó œ Ò$Ó † Ò$Ó œ Ò%ÓÒ$Ó
Ò#Ó

"

 In  solve the linear equation ™& Ò$ÓD  Ò%Ó œ Ò"Ó À

  Ò$ÓD œ Ò"Ó  Ò%Ó œ Ò"Ó  Ò"Ó œ Ò#Ó

     so D œ Ò$Ó † Ò#Ó œ œ Ò%ÓÞ" Ò#Ó
Ò$Ó

     Check by substituting:  Ð Ò$ÓÒ%Ó  Ò%Ó œ Ò#Ó  Ò%Ó œ Ò"ÓÞ Ñ

 Certain quadratic equations can be solved in ™& À

    B  Ò#ÓB  Ò#Ó œ Ò!Ó#

    (Í ÐB  Ò$ÓÑ † ÐB  Ò%ÓÑ œ Ò!Ó check the factoring by using the
       distributive, commutative and
       associative properties as needed)

 Í ÐB  Ò$ÓÑ œ Ò!Ó ÐB  Ò%ÓÑ œ Ò!Ó   or    (by Theorem 11)

   or  Í B œ  Ò$Ó B œ  Ò%Ó

    or   ( )Í B œ Ò#Ó B œ Ò"Ó Check by substituting!
 

 Not all quadratics can be solved in :   Check that   has no solution in ™ ™& &
#D œ Ò$Ó Þ

 The last example shows that elements in a field do not necessarily have square roots.
 The element  has no square root in ;  and we learned long ago that  has no squareÒ$Ó #™&

 root in the field .



When is  a field?™7

We have seen that  and are  fields.  A quick check shows that , , and ™ ™ ™ ™ ™ ™ ™% ' # $ & ( ""not ß ß
are all fields.  We are going to prove that  is a field iff  is a prime number.  This depends on™7 7
looking an important little theorem about integers, primes and modular arithmetic a theorem
important enough to have a name attached to it.

Fermat's Little Theorem   Suppose .  If  is a prime number and  does + − : :™ not
divide , then    ( ))+ + ´ ":"

: that is,  is divisible by .+  " ::"

Note:    1)  In terms of , the theorem says that if  is a prime number and  does not™: : :
divide , then in .  If , the conclusion of the theorem may+ Ò+ Ó œ Ò"Ó :l+:"

:™
be false for example, if   and 6  then  . : œ $ + œ ß ' Î́ "$"

$

2) A little bit of history:

The most significant of Pierre de Fermat's correspondents in number theory
was Bernhard Frenicle de Bessy (1605-1675), an official at the French mint
who was renowned for his gift of manipulating large numbers. (Frenicle's facility
in numerical calculation is revealed by the following incident:  on hearing that
Fermat had proposed the problem of finding cubes which when increased by
their proper divisors become squares, as is the case with
(  Ð"  (  ( Ñ œ #!$ # #, he immediately gave four different solutions; and
supplied six more the next day.)  Though in no way Fermat's equal as a
mathematician, Frenicle alone among his contemporaries could challenge him in
number theory and his challenges had the distinction of coaxing out of
Fermat some of his carefully guarded secrets.  One of the most striking is
(...the Little Theorem, stated above...).  Fermat communicated this result in a
letter to Frenicle dated October 18, 1640, along with the comment “I would
send you the demonstration, if I did not fear its being too long.”
         (D.M. Burton, , Allyn and Bacon, 1980, p. 97 )Elementary Number Theory

Fermat is better known for a different result which might be called “Fermat's Big
Theorem” although people usually call it “Fermat's Last Theorem.”  He wrote
it down in 1647 in the margin of a book (a translation of the Arithmetica of
Diophantus). It states that there are no positive integers  satisfying theBß Cß D
equation  when  is a natural number  than .  For it'sB  C œ D 8 # Ð 8 œ #ß8 8 8 larger
easy to find positive integers  that work: for example,  andBß Cß D $  % œ &# # #

&  "# œ "$ ÞÑ# # # In the margin, Fermat also wrote that he had a “truly
marvelous” proof but that the margin was too small to contain it.

In fact, “Fermat's Last Theorem” remained unproved, in spite of many attempts,
for more than 350 years.  Finally, in 1993, a British mathematician named
Andrew Wiles announced that he had a proof.  It turned out that Wiles' “proof”
was flawed, but he and a collaborator worked to fix the error and finally
produced a correct proof  in 1995.  The proof is a real tour-de-force of modern
mathematics and indicates that Fermat's Last Theorem is actually “very veryß
deep” in spite of being very simple to state. No one today believes Fermat
actually had the proof he referred to in the margin of Diophantus although he
might have believed that he did.



To prove the “Little Theorem” we need a result that we proved some time ago:  if  is a prime:
and , then   :l+, :l+ :l,Þ Ðor Here's a quick recap of how that proof was done:  if , then: l +Î
gcd , so there must exist integers  such that .  Multiplying by Ð+ß :Ñ œ " Bß C " œ +B  :C ,
gives Since  and , it follows that , œ +,B  :,CÞ :l+,B :l:,C :l,ÞÑ

Proof of the “Little Theorem”  (This proof is handled in  The heart of the proof consists of™:Þ
the two simple observations.)  Assume that  is a prime number and  does not divide .: : +

 i)  of the integers  ... ,  are equivalent modulo .No two +ß #+ß $+ß Ð:  "Ñ+ :
 

Consider any two integers from the list, say  and  where5+ 6+
" Ÿ 5  6 Ÿ :  " : + :.  We are assuming that  does not divide , and  does not
divide since .  Therefore (since  is prime),  does not6  5 Ð !  6  5  :Ñ : :
divide the product , and so  and  are  equivalent+Ð6  5Ñ œ +6  +5 +6 +5 not
modulo .:

Therefore  equivalence classes from in the list ...,  areno two ™: Ò+Óß Ò#+Óß Ò$+Óß ÒÐ:  "Ñ+Ó
the same.

 ii)   of the equivalence classes ...,  is  .None Ò+Óß Ò#+Óß Ò$+Óß ÒÐ:  "Ñ+Ó Ò!Ó

Suppose Since  is a prime that does not divide  or ," Ÿ 5 Ÿ :  "Þ : + 5
: 5+ Ò5+Ó Á Ò!Ó Þ cannot divide the product .  Therefore   in ™:

So ... ,  is a list containing a total of   Ò+Óß Ò#+Óß Ò$+Óß ÒÐ:  "Ñ+Ó Ð:  "Ñ different nonzero
equivalence classes from ; that means it is a list of  the nonzero equivalence classes in ™ ™: :all
( ).how many different nonzero equivalence classes does have?™:

Here's another list of the all different nonzero equivalence classes in .™: À Ò"Óß Ò#Óß ÞÞÞ ß Ò:  "Ó
So the two lists must contain exactly the same equivalence classes (although probably listed in
different orders).

Since multiplication in is commutative,  in ™ ™: the two lists have the same product : À

  Ò+Ó † Ò#+Ó † ÞÞÞ † ÒÐ:  "Ñ+Ó œ Ò"Ó † Ò#Ó † ÞÞÞ † Ò:  "Ó

Because of the definition of multiplication in  this means that™:ß

  Ò+ † #+ † ÞÞÞ † Ð:  "Ñ+Ó œ Ò" † # † ÞÞÞ † Ð:  "ÑÓ

so  Ò Ð:  "Ñx † + Ó œ Ò Ð:  "Ñx Ó:"

so     Ð:  "Ñx † + ´ Ð:  "Ñx:"
:

so   is divisible by .Ð:  "Ñx † +  Ð:  "Ñx œ Ð:  "Ñx Ð+  "Ñ ::" :"

Since  is prime and  does not divide any of the factors we see that ,.: : "ß #ß ÞÞÞß :  "ß : l Ð:  "ÑxÎ
Therefore we conclude that , or, in other words, : l Ð+  "Ñ + ´ "Þ ñ:" :"

:



Here is a slight variation of the theorem which is true   divides whether or not : +Þ

Corollary  If  is a prime, then : + ´ +Þ:
:

Proof  If , then 0 .   If , then the theorem tells us that , and:l+ + ´ ´ + + ´ ": :"
: : :: l +Î

multiplying both sides by  gives     + + ´ +Þ ñ:
:

Example  To illustrate, suppose .  Whenever  is  a multiple of 5, then , that is,: œ & + + ´ "not %
&

&lÐ+  "ÑÞ%   For example:

         + œ $ $  " œ )!%

        + œ % %  " œ #&&%

    + œ ' '  " œ "#*&%

      + œ $# $#  " œ "!%)&(&%

   179+ œ "(*  " œ "!#''#&')!%

In each example,  (just as the theorem says should happen).&l+  "%

Example  Fermat's Little Theorem can be used to find the smallest natural number congruent to a
given number mod  .  For example, ,  so ( 3 .Ð :Ñ $ ´ " $ œ $ Ñ † ´ Ð"Ñ † $ œ * ´ #' ")(% $"# # $"# #

( ( (
'

Therefore  in Ò$ Ó œ Ò#Ó Þ")(%
(™

Example     Verify that & ´ %Þ$)
""

By Fermat's Little Theorem,   Therefore & ´ "Þ & œ Ð& Ñ † & ´ Ð"Ñ † &"! $) "! $ ) $ )
"" ""

œ & œ Ð& Ñ ´ Ð$Ñ œ )" ´ %Þ) # % %
"" ""

Note:  there is not necessarily a “best” way to do such a simplification.  I used the method above
just to illustrate Fermat's Little Theorem.  Someone might notice a quicker calculation.  For
example

 Since , then  & œ $"#& ´ " & œ Ð& Ñ † & ´ Ð"Ñ & œ "#& ´ % Þ& $) & ( $ ( $
"" "" ""



Here is the main theorem about the 's that was promised earlier.™7

Theorem  ™7 is a field if any only if  is a prime number.7

Proof   i) Assume , a prime number. is a prime number.  The field axioms  for F67 œ : Ñexcept w

are true in  , so all we need to prove is that Z6  is also  true in  when  is prime.  Soevery ™ ™7 :
w :

suppose  and ÒBÓ − ÒBÓ Á !Þ™:

Then , so Fermat's Little Theorem gives that   Since is an integer, we can: l B ÒB Ó œ Ò"ÓÞ BÎ :" :#

let .  Then .   So is an additive inverseÒCÓ œ ÒB Ó − ÒCÓ † ÒBÓ œ ÒB Ó † ÒBÓ œ ÒB Ó œ Ò"Ó ÒCÓ:# :# :"
:™

for in   Therefore  is a field,ÒBÓ Þ™ ™: :

 ii) Assume  is  a prime number.  Then we can write  where ,7 7 œ 58 5ß 8 −not 
"  5  7 "  8  7 ß Ò5Ó Á Ò!Ó Ò8Ó Á Ò!Ó Ò5Ó † Ò8Ó œ Ò!ÓÞ and .  Then in   and , but   According™7

to Theorem 11, this cannot happen in a field.  So  is not a field.   ™7 ñ

Some Concluding Thoughts

Earlier we agreed that the operations in  will be referred to as  and rather than with the™7  †
more clumsy notation and By now, you should also be comfortable enough with the factŠ  Þ
that the members of  are sets (equivalence classes) that we can relax a bit and simplify™7

notation further. We will henceforth just refer to the elements of   as  with the™7 !ß "ß ÞÞÞß7  "
understanding that these are just shorthand for  You can Ò!Óß Ò"Óß ÞÞÞß Ò7  "ÓÞ carry in your head
that when working in , 1 are really equivalence classes of integers modulo ™7 !ß "ß ÞÞÞß7  7Þ

The context of what we're talking or writing about determines whether “ ” refers to “the integer"
" Ò"Ó” or “the equivalence class in .”™7

If you are working in a setting where sometimes “2” means “the integer ” and#
sometimes “ ” refers to an element of   it might be helpful to revert to different# ß™7 then
notations like  and  to help keep things straight.# Ò#Ó

With those understandings, the arithmetic tables for  look much neater:™%

  

0 3
3 0

           

 ! " # $ † ! " # $

! !
" "
# #
$ $

! " # $ ! ! ! !
" # $ ! " #
# " ! # ! #
$ ! " # ! $ # "

We can think of (or  as a “new number system” whose members “really” are equivalence™ ™% 7Ñ
classes of numbers we already had (integers).

What we did was to use an equivalence relation (  together with the (informal) number´ Ñ7

system to create the new number systems  In the “ ” Ð Ñ Þ ß™ ™ ™7 7 new numbers are really
equivalence classes very, built using the old numbers and an equivalence relation. This idea is 
important.  For example, very soon we are going to use the “old” number system  (which we=



have previously constructed in a very careful way from sets) together with ordered pairs and
equivalence classes to very carefully construct a “new” number system that will be “act just like”
the informal system of integers, .  This will then become the official, precise definition of  the™
system of integers .  Is this formal system , each integer will turn out to be a certain™ ™
equivalence class.

Some final comments about fields (without proof)

1) The fields  and  are infinite.  Each field  (  a prime) is an example of a  ‘ ™: : finite
field (with  elements).:
    There are examples of finite fields other than the fields  A finite field always has ™:

8Þ :
elements, where  is some prime number and .: 8 − 

2) In the fields  and ,  a sum of ' can never be , that is ‘ " = !

   Ða8 − Ñ " œ "  "  ÞÞÞ  " Á ! 
3œ"

8

A field with this property is called a field of characteristic 0Þ

By contrast, in ,  , and more generally, in  the sum of  's™ ™$ :
3œ"

$" œ "  "  " œ ! : "

is 0Þ

For any field field ofJ À " œ ! " Á ! 8  : Jif  but  for all , then we say that  is a  
3œ" 3œ"

: 8

characteristic :. For example, is said to have characteristic 5 and for any prime ,™& :
  has characteristic .™: :

There are fields of characteristic  other than the fields . In fact, there exist infinite: ™:

fields with characteristic : Á !Þ

It turns out that the characteristic of any field  is either  or a prime number .J ! :

3) Every field  of characteristic   contains a “copy” of  inside itself.  In someJ : Ð Á !Ñ ™:

sense, every such field  is a “extension” of .J ™:

Take Math 430 to learn much more about fields!  The theory of fields leads naturally into
a subject called Galois Theory.  Elementary applications of Galois Theory include
proving that it's impossible to trisect an angle using just a compass and straightedge;  and
that there cannot be a general formula (analogous to the quadratic formula) that expresses
all the roots (where  in terms of the+ B  + B  + B  + B  + B  + œ ! + Á !Ñ& % $ # " ! &

& % $ #

coefficients.


