Homework 2, 9a)
Prove that if x and y are positive real numbers, then $\frac{x+y}{2} \geq \sqrt{x y}$. Where in the proof is it essential that x and y be positive?
(Note before we start: "positive" really isn't necessary $(x, y>0)$. What is necessary is that x and y be nonnegative $(x, y \geq 0)$

Comments

A proof is supposed to be a logical argument that uses already known mathematical facts and any given hypotheses to argue that a certain conclusion (${ }^{* * *)}$ must follow.

For a "direct proof" this means that either the proof:

1) starts with known facts or hypotheses of the theorem and from these to the conclusion (where the proofs ends).

or the proof:
2) contains a sequence of steps, all equivalent (\Leftrightarrow) to each other (with justification for the equivalence where needed) in which
a) the first or last step is a true statement (or hypothesis, which is assumed to be true for the theorem) , and
b) the last or first step is the desired conclusion
(which means that a true statement is equivalent to the statement *** that you want to prove, and therefore *** must also be true.)

WRONG: NOT A PROOF

$$
\begin{aligned}
& \frac{x+y}{2} \geq \sqrt{x y} \\
& \frac{(x+y)^{2}}{4} \geq x y \\
& x^{2}+2 x y+y^{2} \geq 4 x y \quad \text { so } \\
& x^{2}-2 x y+y^{2} \geq 0 \\
& (x-y)^{2} \geq 0
\end{aligned}
$$

I assume here that each of these steps is simple enough not to need a comment to justify it. But the problem is that the "argument" moves in the wrong direction. It begins with the statement that you want to prove, and ends with $(x-y)^{2} \geq 0$. The words "so" indicate that the next line is true because the preceding line is true. This is really a proof that "If $\frac{x+y}{2} \geq \sqrt{x y}$, then $(x-y)^{2} \geq 0$." (which would be an odd thing to try to prove since $(x-y)^{2} \geq 0$ is already known)

If you remove the word "so"

$$
\begin{aligned}
& \frac{x+y}{2} \geq \sqrt{x y} \\
& \frac{(x+y)^{2}}{4} \geq x y \\
& x^{2}+2 x y+y^{2} \geq 4 x y \\
& x^{2}-2 x y+y^{2} \geq 0 \\
& (x-y)^{2} \geq 0
\end{aligned}
$$

the argument still moves in the wrong direction.

One way to fix this (in this example) is in Column 2.

A PROOF

Because $x \geq 0$ and $y \geq 0$,
$\sqrt{(x+y)^{2}}=|x+y|=x+y$, and $\sqrt{x y}$ is defined, we know that

$$
\begin{aligned}
& \frac{x+y}{2} \geq \sqrt{x y} \\
& \Leftrightarrow \frac{(x+y)^{2}}{4} \geq x y \quad(*) \\
& \Leftrightarrow x^{2}+2 x y+y^{2} \geq 4 x y \\
& \Leftrightarrow x^{2}-2 x y+y^{2} \geq 0 \\
& \Leftrightarrow(x-y)^{2} \geq 0 \quad \bullet
\end{aligned}
$$

This proof does start with the line $\frac{x+y}{2} \geq \sqrt{x y}$ but each line is stated to be equivalent to the next line so that, in the end, $\frac{x+y}{2} \geq \sqrt{x y}$ is seen to be equivalent to the (true) statement $(x-y)^{2} \geq 0$.

Of course, if you write " \Leftrightarrow " between two lines, that equivalence might need some justification. The comments (*) at the beginning are meant to justify the implication \Uparrow between from line 2 to line 1. The other equivalences here are simple enough not to need additional comment.

ANOTHER PROOF

We know that $(x-y)^{2} \geq 0$, that is $x^{2}-2 x y+y^{2} \geq 0$. Therefore $x^{2}+2 x y+y^{2} \geq 4 x y$, so $\frac{(x+y)^{2}}{4} \geq x y$.
Since $x \geq 0$ and $y \geq 0$, we have that $\sqrt{(x+y)^{2}}=|x+y|=x+y$, and also $\sqrt{x y}$ is defined. Therefore $\frac{x+y}{2} \geq \sqrt{x y}$.
Here, the idea for the proof clearly came from looking at the incorrect "proof" given above. It was used a scratchwork. It begins with something known and ends with our conclusion.
"Working backwards" is not a proof (unless the steps can all be joined by \Leftrightarrow 's); working backwards is a way to get ideas for a proof which is then written down in the correct "direction."

