Some Definitions and Notation for Use in Early Proof Examples

(most of these are in the Preface to the Student in the text, p. xii)

1) An integer x is even iff we can write $x=2 k$ for some integer k (Somewhat more formally: $\forall x \in \mathbb{Z}(x$ is even $\Leftrightarrow \exists k \in \mathbb{Z}$ for which $x=2 k)$
2) An integer x is odd iff we can write $x=2 k+1$ for some integer k (Somewhat more formally: $\forall x \in \mathbb{Z}$ (x is odd $\Leftrightarrow \exists k \in \mathbb{Z}$ for which $x=2 k+1$)
3) For natural numbers a and b, a divides b (written a|b) iff $b=a k$ for some natural number k. If $a \mid b$, then a is called a divisor or factor of b. More formally, for natural numbers a and $b: \quad(a \mid b \Leftrightarrow \exists k \in \mathbb{N}$ for which $b=a k$.
The definition of "divides" for integers is almost identical:
for integers a and $b: \quad(a \mid b \Leftrightarrow \exists k \in \mathbb{Z}$ for which $b=a k$
4) A natural number p is prime iff $p>1$ and the only divisors of p are p and 1 . More formally,
for a natural number $p: p$ is prime $\Leftrightarrow(p>1) \wedge(a \mid p \Rightarrow(a=1 \vee a=p))$
5) A real number x is called rational iff we can write $x=\frac{p}{q}$ where p and q are integers and $q \neq 0$. More formally,

$$
\text { for a real number } x: \quad x \text { is rational } \Leftrightarrow(\exists p \in \mathbb{Z})(\exists q \in \mathbb{Z}) \quad\left(x=\frac{p}{q} \wedge x \neq 0\right)
$$

6) For a nonnegative integer n, \underline{n} factorial (denoted by $n!$) is defined as follows:

$$
\begin{aligned}
& 0!=1 \\
& 1!=1 \\
& 2!=1 \cdot 2 \\
& 3!=1 \cdot 2 \cdot 3 \\
& \quad \vdots \\
& n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n
\end{aligned}
$$

7) If x is a real number, we define
the floor function, $\lfloor x\rfloor=$ the largest integer that is $\leq x$
For example, $\lfloor 3.1\rfloor=3,\lfloor-4.1\rfloor=-5$.
The floor function is also called the "greatest integer function."
the ceiling function, $\lceil x\rceil=$ the smallest integer that is $\geq x$
For example, $\lceil 3.1\rceil=4$ and $\lceil-4.1\rceil=-4$.
the absolute value function, $|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}$
