The Division Algorithm for \(\mathbb{N} \) and \(\mathbb{Z} \)

Theorem (Division Algorithm for \(\mathbb{N} \)) Suppose \(a \) and \(b \) are natural numbers and that \(b \leq a \). Then there is a natural number \(q \) and a whole number \(r \) such that \(a = bq + r \) and \(0 \leq r < b \). Moreover, \(q \) and \(r \) are unique.

(We usually call \(q \) the “quotient” and \(r \) the “remainder” when \(a \) is divided by \(b \).)

Proof Let \(A = \{ s \in \mathbb{N} : sb > a \} \). There must be at least one such value of \(s \) (see the “Archimedean Principle”, text, p. 105), so \(A \neq \emptyset \). By the Well-Ordering Principle (WOP), \(A \) contains a smallest element: call it \(l \).

Since \(1 \notin A \), we know that \(l > 1 \) so \(q = l - 1 \) is a natural number. Define \(r = a - bq \). This makes \(a = bq + r \). (But we still need to prove that \(0 \leq r < b \)).

We know that
\[
\begin{align*}
lb > a & \quad \text{because } l \in A \\
(l - 1)b = qb & \leq a \quad \text{because } q < l \text{ and therefore } q \notin A.
\end{align*}
\]

Since \(qb \leq a \), we have \(r = a - bq \geq 0 \).

To see that \(r < b \) : if \(r = a - bq \geq b \), we would have
\[
 a \geq b + bq = b + b(l - 1) = lb,
\]
which is false.

Therefore \(0 \leq r < b \) so the proof “there exist” \(q \) and \(r \) with the desired properties is complete.

To prove \(q \) and \(r \) are unique: Suppose \(a = bq + r \) where \(0 \leq r < b \) \((*) \)
and that \(a = bq' + r' \) where \(0 \leq r' < b \) \((***) \)

Subtracting these equations and rearranging gives \(b(q - q') = r' - r \), and therefore
\[
b|(q - q')| = |r' - r|. \quad (***)
\]

Also, we know from \((*) \) that \(-b < -r \leq 0\), and adding this inequality to the inequality \(0 \leq r' < b \) \((***) \) gives
\[
-b < r' - r < b
\]
so that
\[
|r' - r| < b
\]

Substituting this in \((***) \), we get \(b|(q - q')| < b \).

This means that \(|q - q'| < 1 \) and, since \(|q - q'| \) is an integer, this implies that \(|q - q'| = 0 \), that is, \(q = q' \). From this, and the equations
\[
\begin{align*}
a &= bq + r \\
a &= bq' + r'
\end{align*}
\]
we get that \(r = r' \). Therefore \(q, r \) are unique.

(over \(\rightarrow \))
We can also state a division algorithm for \mathbb{Z}.

Theorem (Division Algorithm for \mathbb{Z}) Suppose a and b are integers and that $b > 0$
Then there is an integer q and an integer r such that $a = bq + r$ and $0 \leq r < b$.
Moreover, q and r are unique.

There are various ways to state the division algorithm for \mathbb{Z}. In this version, we require that the
divisor $b > 0$, so actually $b \in \mathbb{N}$, and that $0 \leq r < b$. Another version (you might try to prove it)
allows b to be any nonzero integer and has $0 \leq r < |b|$. In all versions, the statement requires
that the remainder r be nonnegative: that fact is usually what's important when the Division
Algorithm is used.

Proof If $a > 0$, we get q and r from the Division Algorithm in \mathbb{N}.
If $a = 0$, let $q = r = 0$.
If $a < 0$, then apply the Division Algorithm in \mathbb{N} for dividing $-a$ by b. There are
natural numbers q' and r' for which

$$-a = bq' + r'$$

where $0 \leq r' < b$

Then $a = b(-q') - r'$ where $-b < -r' \leq 0$.

Using this equation:

Case i) If $-r' = 0$:

Let $q = -q'$, $r = 0$. Then $a = b(-q') - r' = bq + r$ where $0 \leq r < b$

Case ii) If $-b < -r' < 0$:

Let $q = -q' - 1$ and $r = b - r'$.

Then $a = b(-q') - r' = b(-q') - b - r' + b$

$= b(-q' - 1) + (b - r')$

$= bq + r$, where $0 < b - r' = r < b$

(since $-b < -r' < 0$).

So, in both cases, we can find integers q and r for which $a = bq + r$, with $0 < r < b$.

The proof that q and r are unique is left as an exercise (see proof of the previous theorem for
ideas).

Example The division algorithm in \mathbb{N}: $3 < 7$ so we can write $7 = 3q + r$ where $0 \leq r < 2$
(namely, with $q = 2$ and $r = 1$)

The division algorithm in \mathbb{Z} (in the form stated above, requiring the divisor $b > 0$)
with $b = 3$ and $a = -7$ says that we can write $-7 = 3q + r$, where $0 \leq r < 3$.
Here the values that work are $q = -3$ and $r = 2$, and that's the only way to pick q
and r if you want $0 \leq r < 3$.
We proved the Division Algorithm for \(\mathbb{N} \) using WOP. Here's an alternate proof using PMI, doing “induction on \(b \).” Stated more formally, we want to prove:

\[
(\forall b \in \mathbb{N})(\forall a \in \mathbb{N})(\exists q \in \mathbb{N})(\exists r \in \mathbb{N}) \quad (a = bq + r) \land (0 \leq r < b)
\]

To prove this universal statement (working left to right), we pick any \(b \in \mathbb{N} \).

For this arbitrary but fixed natural number \(b \) we need to prove that

\[
(\forall a \in \mathbb{N})(\exists q \in \mathbb{N})(\exists r \in \mathbb{N}) \quad (a = bq + r) \land (0 \leq r < b)
\]

This is a statement of the form \((\forall a \in \mathbb{N}) P(a)\), where \(P(a) \) is the statement

\[
(\exists q \in \mathbb{N})(\exists r \in \mathbb{N}) \quad (b = aq + r) \land (0 \leq r < a)
\]

We use induction on the natural number \(a \).

This looks just a little odd, but \(a \) is a natural number, so induction is OK; if it makes you more comfortable, change “\(a \)” everywhere to “\(n \).”

Proof **Base case:** Suppose \(a = 1 \).

- If \(b = 1 \), let \(q = 1 \) and \(r = 0 \). Then \(a = bq + r \) and \(0 \leq r < 1 \)
- If \(b > 1 \), let \(q = 0 \) and \(r = 1 \). Then \(a = bq + r \) and \(0 \leq r < 1 \).

So \(P(1) \) is true.

Induction step: Suppose \(P(a) \) is true for some particular value of \(a \). Thus, we are assuming (for this value of \(a \)) that there are natural numbers \(q' \) and \(r' \) for which \(a = bq' + r' \) and \(0 \leq r' < b \).

We need to prove that \(P(a + 1) \) is true, that is, that there exists natural numbers \(q \) and \(r \) for which \(a + 1 = bq + r \), where \(0 \leq r < b \).

Case i: If \(r' = b - 1 \):

\[
a = bq' + r' = bq' + (b - 1), \quad a + 1 = bq' + b = b(q' + 1) + 0
\]

Let \(q = q' + 1 \) and \(r = 0 \)

Then \(a + 1 = bq + r \), where \(0 \leq r < b \)

Case ii: If \(r' < b - 1 \):

\[
a = bq' + r', \quad a + 1 = ab + (r' + 1)
\]

Let \(q = q' \) and \(r = r' + 1 \)

Then \(a + 1 = bq + r \), where \(0 \leq r < b \).

In both cases, we can find the necessary \(q \) and \(r \). So \(P(k + 1) \) is true.

By PMI, \((\forall a \in \mathbb{N}) P(a)\) is true (for the particular \(b \) we chose). Since the argument works no matter which \(b \in \mathbb{N} \) we choose, we conclude that

\[
(\forall b \in \mathbb{N})(\forall a \in \mathbb{N})(\exists q \in \mathbb{N})(\exists r \in \mathbb{N}) \quad (a = bq + r) \land (0 \leq r < b)
\]