The Division Algorithm for \mathbb{N} and \mathbb{Z}

Theorem (Division Algorithm for \mathbb{N}) Suppose a and b are natural numbers and that $b \leq a$. Then there is a natural number q and a whole number r such that $a=b q+r$ and $0 \leq r<b$. Moreover, q and r are unique.
(We usually call q the "quotient" and r the "remainder" when a is divided by b.)
Proof Let $A=\{s \in \mathbb{N}: s b>a\}$. There must be at least one such value of s (see the "Archimedean Principle", text, p. 105), so $A \neq \emptyset$. By the Well-Ordering Principle (WOP), A contains a smallest element: call it l.

Since $1 \notin A$, we know that $l>1$ so $q=l-1$ is a natural number. Define $r=a-b q$.
This makes $a=b q+r$. (But we still need to prove that $0 \leq r<b$).
We know that $\begin{cases}l b>a & \text { because } l \in A \\ (l-1) b=q b \leq a & \text { because } q<l \text { and therefore } q \notin A .\end{cases}$
Since $q b \leq a$, we have $r=a-b q \geq 0$.
To see that $r<b$: if $r=a-b q \geq b$, we would have $a \geq b+b q=b+b(l-1)=l b$, which is false.

Therefore $0 \leq r<b$ so the proof "there exist" q and r with the desired properties is complete
To prove q and r are unique: \quad Suppose $a=b q+r \quad$ where $0 \leq r<b \quad(*)$ and that $a=b q^{\prime}+r^{\prime} \quad$ where $0 \leq r^{\prime}<b \quad(* *)$

Subtracting these equations and rearranging gives $b\left(q-q^{\prime}\right)=r^{\prime}-r$, and therefore

$$
b\left|\left(q-q^{\prime}\right)\right|=\left|r^{\prime}-r\right| . \quad(* * *)
$$

Also, we know from $(*)$ that $-b<-r \leq 0$, and adding this inequallity to the inequality

$$
0 \leq r^{\prime}<b \quad(* *) \text { gives }
$$

$$
-b<r^{\prime}-r<b \text { so that }
$$

$$
\left|r^{\prime}-r\right|<b
$$

Substituting this in $(* * *)$, we get $b\left|\left(q-q^{\prime}\right)\right|<b$.
This means that $\left|q-q^{\prime}\right|<1$ and, since $\left|q-q^{\prime}\right|$ is a integer, this implies that $\left|q-q^{\prime}\right|=0$, that is, $q=q^{\prime}$. From this, and the equations

$$
\begin{aligned}
& a=b q+r \\
& a=b q^{\prime}+r^{\prime}
\end{aligned}
$$

we get that $r=r^{\prime}$. Therefore q, r are unique.

$$
(\text { over } \rightarrow \text {) }
$$

We can also state a division algorithm for \mathbb{Z}.
Theorem (Division Algorithm for \mathbb{Z}) Suppose a and b are integers and that $b>0$
Then there is an integer q and an integer r such that $a=b q+r$ and $0 \leq r<b$.
Moreover, q and r are unique.
There are various ways to state the division algorithm for \mathbb{Z}. In this version, we require that the divisor $b>0$, so actually $b \in \mathbb{N}$, and that $0 \leq r<b$. Another version (you might try to prove it) allows b to be any nonzero integer and has $0 \leq r<|b|$. In all versions, the statement requires that the remainder r be nonnegative: that fact is usually what's important when the Division Algorithm is used.

Proof If $a>0$, we get q and r from the Division Algorithm in \mathbb{N}.
If $a=0$, let $q=r=0$.
If $a<0$, then apply the Division Algorithm in \mathbb{N} for dividing $-a$ by b. There are natural numbers q^{\prime} and r^{\prime} for which

$$
-a=b q^{\prime}+r^{\prime} \quad \text { where } 0 \leq r^{\prime}<b
$$

Then $a=b\left(-q^{\prime}\right)-r^{\prime}$ where $-b<-r^{\prime} \leq 0$.
Using this equation:
Case i) If $-r^{\prime}=0$:
Let $q=-q^{\prime}, r=0$. Then $a=b\left(-q^{\prime}\right)-r^{\prime}=b q+r$ where $0 \leq r<b$

Case ii) If $-b<-r^{\prime}<0$:
Let $q=-q^{\prime}-1$ and $r=b-r^{\prime}$.

$$
\text { Then } \begin{aligned}
a=b\left(-q^{\prime}\right)-r^{\prime} & =b\left(-q^{\prime}\right)-b-r^{\prime}+b \\
& =b\left(-q^{\prime}-1\right)+\left(b-r^{\prime}\right) \\
& =b q+r, \quad \text { where } 0<b-r^{\prime}=r<b \\
& \left.\quad \text { (since }-b<-r^{\prime}<0\right) .
\end{aligned}
$$

So, in both cases, we can find integers q and r for which $a=b q+r$, with $0<r<b$.
The proof that q and r are unique is left as an exercise (see proof of the previous theorem for ideas).

Example The division algorithm in \mathbb{N} : $3<7$ so we can write $7=3 q+r$ where $0 \leq r<2$

$$
\text { (namely, with } q=2 \text { and } r=1 \text {) }
$$

The division algorithm in \mathbb{Z} (in the form stated above, requiring the divisor $b>0$) with $b=3$ and $a=-7$ says that we can write $-7=3 q+r$, where $0 \leq r<3$. Here the values that work are $q=-3$ and $r=2$, and that's the only way to pick q and r if you want $0 \leq r<3$.

We proved the Division Algorithm for \mathbb{N} using WOP. Here's an alternate proof using PMI, doing "induction on b." Stated more formally, we want to prove:

$$
(\forall b \in \mathbb{N})(\forall a \in \mathbb{N})(\exists q \in \mathbb{N})(\exists r \in \mathbb{N})(a=b q+r) \wedge(0 \leq r<b)
$$

To prove this universal statement (working left to right), we pick any $b \in \mathbb{N}$.
For this arbitrary but fixed natural number b we need to prove that

$$
(\forall a \in \mathbb{N})(\exists q \in \mathbb{N})(\exists r \in \mathbb{N})(a=b q+r) \wedge(0 \leq r<b)
$$

This is a statement of the form $(\forall a \in N) P(a)$, where $P(a)$ is the statement

$$
(\exists q \in \mathbb{N})(\exists r \in \mathbb{N}) \quad(b=a q+r) \wedge(0 \leq r<a)
$$

We use induction on the natural number a.
This looks just a little odd, but a is a natural number, so induction is OK; if it makes you more comfortable, change " a " everywhere to " n."

Proof Base case: Suppose $a=1$.

$$
\begin{aligned}
& \text { If } b=1 \text {, let } q=1 \text { and } r=0 \text {. Then } a=b q+r \text { and } 0 \leq r<1 \\
& \text { If } b>1 \text {, let } q=0 \text { and } r=1 \text {. Then } a=b q+r \text { and } 0 \leq r<1 \text {. }
\end{aligned}
$$

So $P(1)$ is true.
Induction step: Suppose $P(a)$ is true for some particular value of a. Thus, we are assuming (for this value of a) that there are natural numbers q^{\prime} and r^{\prime} for which $a=b q^{\prime}+r^{\prime}$ and $0 \leq r^{\prime}<b$.

We need to prove that $P(a+1)$ is true, that is, that there exists natural numbers q and r for which $a+1=b q+r$, where $0 \leq r<b$.

$$
\begin{aligned}
& \text { Case i: If } r^{\prime}=b-1: \begin{array}{c}
a=b q^{\prime}+r^{\prime}=b q^{\prime}+b-1 \text {, so } \\
a+1=b q^{\prime}+b=b\left(q^{\prime}+1\right)+0 \\
\text { Let } q=q^{\prime}+1 \text { and } r=0 \\
\text { Then } a+1=b q+r \text {, where } 0 \leq r<b
\end{array} \\
& \text { Case ii: If } r^{\prime}<b-1: \\
& a=b q^{\prime}+r^{\prime} \text { so } \\
& a+1=a b+\left(r^{\prime}+1\right) \\
& \text { Let } q=q^{\prime} \text { and } r=r^{\prime}+1 \\
& \text { Then } a+1=b q+r \text {, where } 0 \leq r<b .
\end{aligned}
$$

In both cases, we can find the necessary q and r. So $P(k+1)$ is true.
By PMI, $(\forall a \in \mathbb{N}) P(a)$ is true (for the particular b we chose). Since the argument works no matter which $b \in \mathbb{N}$ we choose, we conclude that

$$
(\forall b \in \mathbb{N})(\forall a \in \mathbb{N})(\exists q \in \mathbb{N})(\exists r \in \mathbb{N})(a=b q+r) \wedge(0 \leq r<b)
$$

