Equivalent Sets

Definition Let A, B be sets. We say that A is equivalent to B iff there exists
a bijection f : A — B. If Aisequivalentto B, we writte A~ B (or A~ Bor A~ Bor
something similar: the notation varies from book to book).

It is intuitively clear that for finite sets A ~ B iff A and B have the same number of elements.
Therefore {a,b} ~ {1,2} (assuming that a # b) but {1,2,3} % {1,2}.

Theorem The relation = is an equivalence relation among sets.

Proof Let A, B, C be sets.

a) The identity mapping f(z) = «x is a bijection f : A — A. Therefore A ~ A, so the
relation is reflexive.

b) If A = B, then there must exist a bijection f : A — B. Then the function

g= f~': B — Aisalso a bijection, so B ~ A. Therefore the relation is symmetric.
(Therefore, to show two specific sets A and B are equivalent, it doesn't matter whether
you show that there is a bijection from A to B or that there is a bijection from Bto A.)

c) Suppose A ~ Band B ~ C'. Then there are bijections f : A — Bandg: B — C.

Thengo f: A — C'is a bijection (check!) so A =~ C. Therefore the relation is
transitive.

Examples

1) Suppose a,b € R and that « < b. Then the intervals (0, 1) and (a, b) are equivalent.
We can see this using a “straight line” bijection f : (0,1) — (a,b) :

flz)=a+ (b—a)x 0<z<l1
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2) Suppose ¢,d € R and that ¢ < d. By Example 1), (0,1) = (¢, d). Since it's also true
that (0,1) ~ (a,b), it follows by symmetry and transitivity that (c,d) = (a,b) : any
two “open intervals” in R are equivalent.

3) Suppose, in Example 1), we change the domain of fto 0 < x < 1. Then the graph of
£ will also include the point (0, a), and the modified function f is a bijection between
[0,1) and [a, D).

Therefore [0,1) ~ [a, b), and it follows that [c, d) ~ [a, b), just as in Example 2).

Similarly, we can “tweak” the domain of f in Example 1) to show that
(c,d] = [a,b] andthat [c,d] =~ [a,b]
4) (0,1] ~ [0,1) because the function f : (0,1] — [0,1) givenby f(z) =1—=zisa
bijection. Using “domain modifications” like to those in Example 3), show that

(c,d] ~ [a,b).

5) (- 5,3) ~ Rbecause tan: (— 3, 5) — R is abijection. By Example 2), this means
that every interval (a,b) ~ R.

6) R =~ (0, 00) because the function f : R — (0,00) where f(x) = e”, is a bijection.
Examples

1) w~ N because the function f : {0,1,2,..., } — {1,2,3,..., } given by
f(z) = x + 1is abijection (check!)

2) Let k € N. Then the function f : {1,2,3,...} — {k,2k,3k,...} givenby f(n) = kn
is a bijection. So, for example, N = {2,4,6,8, ...} and N = {15, 30, 45,60, ...}. By
symmetry and transitivity, {2,4,6,8, ...} = {15, 30,45, 60, ...}.

3 f:{.,—-3, -2, -1} = {1,2,3,...} givenby f(z) = — z is a bijection, so the
set of negative integers is equivalent to the set of positive integers.

4) As a slightly more complicated example, we can also show that N ~ Z. We can see
this using the bijection f : N — Z given by

n if n is even
L=n " if s odd.

(For example, f(2) =1, f(4) =2, f(6)=3,....,f(1) =0, f(3) = —1,
f)y=-2,...)

f.is one-to-one: Suppose f(m) = f(n).
Notice that if m is even and n is odd, then f(m) > 0and f(n) <0, so

f(m) # f(n). Similarly, it cannot be that mn is odd and n even. So
m, n are either both even or both odd.



If m,n are both even, then f(m) = f(n) = 5§ =5 = m=n
If m,n are both odd, then f(m) = f(n) = 1_Tm = 15”
= m=n
fisonto Z: Letz € Z:
if 2> 0, letn =22 €N: then f(n) = £ = 2.
if 2 <0, letn =1-2z¢cN(why?): then f(n) = =02 — .

5) We saw earlier (near the end of the notes on functions) that there is a bijection
f: N — Q" = the set of all positive integers, so N ~ Q*.

Using the following theorem, we can combine certain sets that we know are equivalent to
conclude that other sets are also equivalent (without needing to explicitly produce a bijection

between them).

A~C and

Theorem Suppose that{B ~ D

Then i) Ax B=C x D
i) fANB=0 andCND=0,then AUB~CUD.

Proof Since A =~ C and B =~ D, we know that there are bijections f : A — C andg: B — D.

i) Defineh: Ax B— C x D by the formula:
For (a,b) € A x B, let h(a,b) = (f(c),9(d)) € C x D

hisonto C x D : Suppose (c,d) € C x D. Then ¢ € C so since f is onto, there is

an a € A for which f(a) = c. Similarly, there isa b € B for which g(b) = d. Then
(a,0) € A x Band h(a,b) = (f(a),g(b)) = (c,d).

h_is one-to-one :  Suppose (a1, b;) and (a2, b2) € A x B and that

f_z(al, bl) = h(ag, bg)
By definition of A, this means that(f(a1), g(b1)) = (f(a2), g(b2)), and therefore
f(a1) = f(az) and g(b1) = g(b2). Since f and g are both one-to-one, this gives us that

a] = a» and b1 = bQ. Therefore (al, bl) = (CLQ, bQ)

ii) domain(f) Nndomain(g) = ANB =0, so fUg=hisa function from AU B to

C U D. (There are no points where f and g “disagree” so there is no problem with
. . . [ flx) ifzeA
f U g being a function--see Homework 9). We can write h(z) = { o(z) ifzeB.

hisontoCUD: ifye CUD,thenye Corye D.



If y € C, then (since f is onto) there isana € A for whichy = f(a) = h(a)
and if y € D, then thereisa b € B for which y = g(b) = h(b).

In both cases, y € range(h). Therefore A is onto.
h is one-to-one :  Suppose z,y € AU B and h(z) = h(y).
Ifz € Aand y € B (or vice versa), then h(z) = f(z) € C and
h(x) = h(y) = g(y) € D. Thiswould mean C'" D # (). So either x and y
arein A, or x and y are in B.
Ifz,y € A, then h(z) = f(x) = f(y) = h(y) so, since f is one-to-one,

x=vy. Ifz,y € B,then h(z) = g(x) = g(y) = h(y), so z =y since g is
one-to-one. e

Examples
(0,1)
Y {<o, 1)

Part i)( of the Theorem gives us that (0,1) x (0,1) ~ R x R — that is, the “open box”
(0,1)% in the plane is equivalent to the whole plane R?,

R and
R

Q2

Using part ii) of the theorem again, we get that the “open box” (0, 1) in three-space R?
is equivalent to all of R3.

2) Since (0, 1] ~ (a, b], we conclude that (0, 1]? =~ (a, b
( (0,1]? is a “box” in the plane that contains its top and right edges, but not its left or

bottom edges: draw it.)

With all these examples, we might be tempted to think that all infinite sets are equivalent but this

is not true. The next theorem gives us a way to create (infinitely many) nonequivalent infinite
sets.



Theorem For any set A, A % P(A).

Proof For a finite set A this is clear because if A contains n elements, then P(A) = the set of all
subsets of A contains 2" elements.

Suppose, in general, that f is any function f : A — P(A). We claim that f cannot be onto and
therefore f cannot be a bijection. This will show that A % P(A).

Ifa € A, then f(a) € P(A), so f(a) isasubset of A. Therefore it makes sense to ask whether or
nota € f(a).

It will help in understanding the proof to keep referring to the following illustration of
what's going on:

If A= {1,2,3}, then P(A) = {0, {1}, {2}, {3}, {12}, {1.3},{2.3}. {1.2,3} }.
Suppose (say) f : A — P(A) is the function given by

F) = {12}, £2) = {13}, £(3) = {1}

Then 1 € (1), 2¢f(2)  and 3¢ f(3)

LetB={a€A:a¢ f(a)}. Then BC A,so B € P(A). We claim that B is not in the range
of f.

In the illustration, B = {2, 3}, and, as promised, B is not in the range of f.

Suppose there were an =z € A for which f(z) = B. Then either z € Bor x ¢ B.

If z € B, then x must satisfy the membership requirement for B: thatz ¢ f(z).
Butthen z ¢ f(x) = B, so this is impossible.

If x ¢ B, then x fails to meet the membership requirement for B: so z € f(z).
But then z € f(x) = B which is impossible.

Either way, the assumption that there is an = such that f(x) = B leads to a contradiction, so no
such z can exist. Therefore f is not onto. e

Example By the theorem, N % P(N).

Notice that there is a one-to-one (not onto) map f : N — P(N) (for example, let

f(n) ={n} e P(N)). If f: A— P(A) issuch aone-to-one function, then

A~ f[A] =range(f) C P(A). So A is always equivalent to a subset of P(A) but never
equivalent to the whole set P(A). Intuitively, this means that P(A) is a “bigger” infinite set than
A.

We can continue to apply the power set operation over and over to get
N # P(N), P(N) # P(P(N)), P(P(N)) # P(P(P(N))), ...
and thus create a sequence of “larger” and “larger” nonequivalent infinite sets.



We proved that for every set A, A % P(A). In particular, N 2 P(N). However, we can show
that P(N) is equivalent to another familiar set: {0, 1}". Recall that {0, 1}' denotes the set of all
functions f : N — {0,1}. Such an f is a sequence for which every term has value 0, or 1:

if £ €{0,1}Y, we have values f(1), f(2), f(3), ..., f(n), ... where each f(n) = 0or 1
In other words, {0, 1} is the set of all “binary sequences.”
Theorem P(N) ~ {0, 1}
Proof Define a function @ : {0,1}N — P(N) as follows:
if fe{0,1}N, then ®(f) ={n e N: f(n) =1} € P(N)

If f is a binary sequence, then ®( f) is the subset of N consisting of all those n for which
the n'" term of the sequence is 1. For example suppose f has values

f(), £(2), f(3), f(4), f(5), f(6),...
o, 1 1, 0, 0, 1 ..
then ®(f) = {2,3,6, ... }.
® is one-to-one: if f,g € {0, 1} and f # g, then there is an n € N for which f(n) # g(n).
Suppose f(n) = 1and g(n) = 0. Thenn € ®(f) but n ¢ ®(g), 50 (f) # (g). Similarly if

f(n)=0and g(n) =1, thenn ¢ ®(f) butn € ®(g),
s0 ®(f) # @(g).

® is onto: Suppose A € P(N), that is, suppose A C N. Define a binary sequence f as follows:

1 ifneA
ﬂm:{Oﬁn¢A

Then f € {0,1}" and, by definition, ®(f) = A. e

Finite Sets

We have informally used the terms “finite set” and “infinite set.” We now make a precise
definition.

Definition Foreach k € N, letN, = {1,2,...,k}. Aset A is called finite if A = () or

if (3k e N)A~Nj.
A is called infinite if A is not finite (thatis, if A # (Jand (Vk € N)A # Ny

Definition For a finite set A :



i) if A=, we say that 0 is the cardinal number of A (or that A has
cardinality 0), and write |A| = 0.

i) if A ~ Ny, we say that & is the cardinal number of A (or that A has
cardinality k), and write |A| = k.

We already have a lot of intuitive ideas about how finite sets behave. But now that we have an
“official” definition of “finite set,” each of these intuitive statements should be proved: this will
show that the formal definition of finite set correctly “captures” the intuitive idea of finite set. It
turns out that we can prove that our informal ideas about finite sets are actually theorems using
the official formal definition for finite sets.

(As we shall see later: we also have some intuitive ideas about infinite sets. But for infinite sets
our intuition is sometimes wrong: for infinite sets, careful proofs become very important.)

Here is a list of familiar properties of finite sets. They are all proved in Section 5.1 of the
textbook; many of the proofs use induction. We are not going to go over those proofs — doing
them all is a tedious, it takes a lot of time, and the results, in the end, are just what we thought
intuitively would be true. But we will prove one important fact about finite sets, below.

Theorems About Finite Sets

1. If Aisfinite and A ~ B, then Biis finite; a finite set is never equivalent to a proper
subset of itself.

2. If Aisfiniteand = ¢ A, then AU {z} is finite,and |A U {z}| = |A| + 1.
3. If Aisfiniteand x € A, then A — {z} isfiniteand |A — {z}| = |A] — 1.
4. Every subset of a finite set is finite.

5. If A and Bare finite:

a) [AUB|=|A|+|B|—-|AnNB|
b) If AN B =1, then |[AU B| = |A| + |B|.

6. If A is finite, then P(A) is finite, and [P(A)| = 214!,
7. Ifne Nand Ay, ..., A, are finite sets, then A; U A U ... U A, is finite.

(“A finite union of finite sets is finite.”)

There is one additional theorem about finite sets that is quite intuitive and which turns out to be
unexpectedly useful.

Theorem (The Pigeonhole Principle) Suppose n,r € Nand that f : N,, — N,.. If n > r, then f
iS not one-to-one.




The idea behind the name is that if there are n “pigeons” to be put into r “pigeonholes” and there
are more pigeons (n) than there are pigeonholes (), then at least two pigeons must go into the
same pigeonhole. The Pigeonhole Principle is also called the Dirichlet Box Principle.

Proof The proof is done by induction on N. Suppose r represents a natural number and that
f N, — N,. We want to prove (vVn € N) P(n), where

P(n) is the statement: if n > r, then f cannot be one-to-one.

Since r represents a natural number so » > 1 and so n > 2. Therefore our induction starts with
n=2.

Base case Ifn=2,thenr=1and f: Ny = {1,2} — {1} = N;. Therefore f must be constant:
f(1) =1= f(2). So f is not one-to-one.

Assume that P(n) is true for some particular value n = k. That is, our induction hypothesis is
(*) If f: N, — N, (where r is any natural number < k), then f is not one-to-one.
We want to prove:
If f: Niy1 — N, (where r is any natural number < &k + 1), then f is not one-to-one
We prove this by contradiction.
Suppose there is a one-to-one function f: Ny.; — N,,where k +1 > r. (*¥)
feo{L2, .k k+1y —{1,2,...,r}
f(k 4+ 1) is one of the numbers 1,2, ..., r. Delete k£ + 1 from the first set (leaving Ny)
and f(k + 1) from the second set (leaving N, — {f(k + 1)}).
Then restricting the function f to the smaller domain we have a one-to-one function
9= fINg: Ny — N, = {f(k+ 1)}

The set on the right ( = the codomain of g) has one less element than N,, so there is a
bijectionh : N, — {f(k+ 1)} — N,_;.

Composing functions, we get a one-to-one function hog: Ny — N, _q,

Since k + 1 > r, we have that £ > r — 1, and the existence of such a one-to-one function
h o g contradicts the induction hypothesis (*).

So no such function as (**) can exist — which says that P(k + 1) is true.

By PMI, P(n)istrue foralln € N. e

As mentioned earlier, this “obvious” Pigeonhole Principle has lots of applications. Before we
look at a few examples, we note one simple corollary.



Corollary If p,q € Nand p # ¢, thenN, # N,

Proof One of p or ¢ is larger than the other — say p > ¢. If f : N, — N, is any function, the, by
the Pigeonhole Principle, f cannot be one-to-one, so f cannot be a bijection. e

The corollary tells us that a set A cannot be equivalent to both N, and N, if p # ¢ : otherwise,
by transitivity, we would have N, ~ N,. This means that the cardinal number of A is well-
defined: if |A| = p, then |A| = ¢ is impossible if ¢ # p.

Example There are two people in Missouri who have the same number of hairs on their heads.

In 2007, the census gives the estimated Missouri population as 5,878,415. Also, various studies
indicate that the average number of hairs on a human head is around 150,000, with, of course,
lots of variation. (Incidentally, the average number varies with the color of the hair!) But it
seems safe to say that every human head has less than 1,000,000 hairs.

Let the population of Missouri be n (where n is some number > 5,878,415). Let
r = 1,000,000. Number the peopleas 1,2,3,...,n.

Define a function f : {1,2,3,...,k,..n} — {1,2,...,r} where f(k) = the number of hairs on k's
head. Since n > r, the Pigeonhole Principle says that f cannot be one-to-one, that is, there are at
least two Missourians with the same number of hairs on their heads.

In this example, the ““pigeons” are the people in Missouri; you can think of the “pigeonholes’™ as
boxes numbered 1, ..., . Each person is placed in the box corresponding to the number of hairs
on the head.

In using the Pigeonhole Principle, sometimes some cleverness is required: the key thing (after
realizing that the Pigeonhole Principle might solve the problem) is to clearly identify the
“pigeons’ and the ““pigeonholes.”



Example Suppose S is a set of NV natural numbers. Show that there is a subset of S whose sum
is divisible by V.

For instance, if S = {5,12,19, 31}, then N = 4 and the subset {5, 12, 31} works, and if
S ={2,19,33}, then N = 3 and the subset {33} works; so does the subset {2, 19, 33}.

Proof Let S = {ai,ay,...,a,} where each a; € N. Consider the N subsets
{a1}, {a1, a2}, ..., {a1, a9, ...,a;}, ..., {a1, a9, ...,an }.

If any one of the sums a; + as + ... + a; is divisible by N, then the subset
{ay,aq, ..., a;} works and we are done. So assume that none of these sums is divisible by N.
Therefore each of these sums has one of the remainders 1,2, ..., N — 1 when divided by N.

Since there are N sums a;, a; + as, ..., aj+ ...+ ay butonly N — 1 possible remainders,
two of these sums must have the same remainder when divided by N (the Pigeonhole Principle).
In other words, there are two sums for which

a+..+a =y a1+ ...+a;+ ... +a;
Subtracting a; + ... + a; from both sides, we get that
0 =N a1 +... +a
S0 N|(aj+1 + ... + ag). Therefore the subset {a;1, ..., a } works.
Here, in Case ii), the “pigeons” are the N sets {a;}, ..., {a1,aq,...,ax} and the “pigeonholes”

are the N — 1 possible remainders: each set is put into a “pigeonhole” determined by the
remainder when its sum is divided by N.



Example Prove that there is a natural number whose digits are all 1's and which is divisible
by 7777.

Consider the 7778 numbers 1, 11, 111,..., 11..1111
T this last number contains
7778 digits, all = 1.

Assign to each number (*pigeon’) in the list, its remainder (“the pigeonhole’”) when divided by
7777. There are only 7777 possible remainders (r = 0,1, ...,0r 7776), so two of the 7778 listed
numbers have the same remainder (the Pigeonhole Principle).

Suppose these two are a and b, where a < b. Then b = 7777 a, S0 b — a is divisible by 7777.

However, not all the digitsof b — a¢ are 1's: if b =111 ... 11111 and
a= 11111
then b —a = 111... 00000 ends in a string of 0's

In fact, if thereare ! 1's in b, and there are & 1'sin a, then b — a consists of [ — k& 1's followed
by k& 0's. We can “cancel out” all the 0's in b — a by dividing by 10* : so blgk.“ is a natural
number all of whose digits are 1. Is it still divisible by 7777?

Notice that 7777 =7-11-101,s0thatb —a = 7777 -m =7-11-101 - m for some m € N.

Therefore o4 = THAGLm — 7.11.101 - j = 7777 - j for some j € N (we know 25* is a

natural number; the 2's and 5's in the denominator must cancel out with 2'sand 5's in the prime

factorization of m : 5z = j € N).

So blg,f is a natural number with only 1's for digits and divisible by 7777.



Example (taken from the Spring 2008 Missouri MAA Mathematics Competition) Consider the
set of points Z x Z = {(z,w) € R?: z and w are both integers} in R?. Imagine having a palette
containing 4 colors. You choose what color to paint the points in Z x Z, in any way you like.

Prove that, when you're done, there must be four points in Z x Z which all have the same color
and which form the vertices of a rectangle.

Proof (We will use the pigeonhole principle, twice.)

1) For any set of 5 points in Z x Z, at least two must have the same color (pigeonhole principle).
For example, in any “column of 5” = {(z,0), (z, 1), (z, 2), (z, 3), (z,4) } two points must have
the same color.

2) For any “column of 5, there are 4 ways to color the first point (z, 1); then 4 (independent)
ways to color the second point (x,2) ; ...; and finally 4 (independent) ways to color the 5th point
(x,5). Altogether, thereare 4 -4 -4 -4 -4 = 4% = 1024 possible color patterns for a

“column of 5.”

3) Look at the first 1025 “columns of 57 :

Column1 = {<1:0)a(171)7<172>a(173)7 (174)}
COll:Ian - {(270)7(271)7(272)7(273)7 (274)}
CO|L:Jmn 1025 = {(1025,0), (1025, 1), (1025, 2), (1025, 3), (1025,4)}

Two of these “columns of 5” must have exactly the same color pattern (by the
Pigeonhole principle, used again). Suppose two such columns are

J:3), }
k,3), }

~~

S
\)

N~—

Column j ={(450), (5:1) (
Column k& {(k,0),(k, 1), (k,2),(

Our first observation 1) tells us that two points in Column ;5 have the same color: suppose
they are (j,m) and (j,n) (where0 <m <n <4).

J,4)
k, 4)

—
N~

Since Column & has the same color pattern, (k,m) and (k, n) are the same color as
(4,m) and (j, n).

Then (j,m), (j,n), (k,m), and (k,n) are the same color and are the vertices of
arectangle. e

Notice that the number of colors, 4, is not important for the argument. If there had been,

say, 2008 colors available in the palette, then simply consider “columns of 2009 rather than

“columns of 5”. For each column, there are 20082°" possible coloring patterns.

Look at the first 20082°% + 1 “columns of 9. All the logic in the argument

works in exactly the same way (but the 4 points that you find might turn out to be the vertices of a
very large rectangle!)




Infinite Sets

We have defined finite and infinite sets and stated some properties of finite sets. One of these
properties of finite sets, the Pigeonhole Principle, turned out to be particularly useful — so we
digressed a little to look at how the Pigeonhole Principle could be used. We now turn our
attention to infinite sets, where our intuitive ideas can lead us astray: for example, a “whole” set
(like N) can be equivalent to one of its proper subsets (like E = {2,4,6,...}). So we have to be
careful not to jump to conclusions when making statements about infinite sets.

Theorem The set A is infinite if and only if there exists a one-to-one function f : N — A.

Proof (=) Suppose A is infinite. Then

A#0D so we can pick an element a; € A.
A # {a1}since {a1} = Ny
and A is not finite.

SoA—{a1}#0 so we can pickanas € A — {a1}
(and as 75 al)

A # {ay,as} since {aj,as} ~ Ny

and A is not finite.

So A —{aj,a} #0 so we can pick an az € A — {ay, a2}

(and a3 # a1, az # as)

Continue to define the a,,'s by induction. Once a,, is defined. then

A # {ay,aq,...,a,}since {ay, ag, ...,a,} = N,
and A is not finite.
So A —{ay,as,....an} #0 so we can pick an a, 1 € A — {ay,a9,...,a,}
(and a1 # a1, a9, ..., ay)

In this way we have inductively defined a,, for all n € N and the terms in the sequence

ai, as, ..., an, ... are all different (each was chosen in a way that makes it different from all its
predecessors). Define f : N — A by f(n) =a,. Sincethe a,'s are all different, f is one-to-
one.

For ( < ), we use the contrapositive: suppose A is finite and show that no such one-to-one
function f can exist.

If A= (,then there are no functions f : N — A (see earlier discussion of Y**)
If A~ N, ={1,2,...,k}, then there is a bijection h : A — N;,
If there were a one-to-one function f : N — A, then we could restrict the
domain of f to get a “new” one-to-one function g = f|Nj;1 : Ny — A.
Then h o g : Ny 1 — Ny, is one-to-one — which contradicts the Pigeonhole

Principle.

So, if A is finite, there is no one-to-one function f : N — A. e



Note: A function f : N — Ais a sequence in A. The terms of the sequence are

a; = f(1),a2 = f(2),...,a, = f(n), ..., and if f is one-to-one, then all these terms are different.
So the preceding theorem could be paraphrased as: A is infinite iff there exists a sequence of
distinct terms ay, ao, ..., ay,, ...in A.

Example The point here is just to illustrate that our official definition of “infinite” gives results
that coincide with some of our intuitive ideas about what sets are infinite.

1) The function f : N — R given by f(n) = n is one-to-one. By the preceding theorem,
R is infinite.

2) The function f : N — (0,1) given by f(n) = % is one-to-one, so the interval (0, 1) is
infinite.

3) Suppose A is infinite, so that there is a one-to-one function f : N — A. If A C B,
then we can view f also as being a one-to-one function f : N — B. So B is also
infinite.

The following theorem tells us that if a subset A C N is “too big to be finite,” then A is
equivalent to the whole set N. For example, consider the set E = {2,4,6,...} C N. E is infinite
so (according to the following theorem) E is equivalent to all of N. In the case of E, this
statement is rather obvious: we can easily see that f : N — E given by f(n) = 2n s a bijection.
But we want to prove it for an arbitrary infinite subset of N.

Theorem If Ais infinite and A C N, then A ~ N.

Proof A # (). By the Well-Ordering Principle (WOP), there is a smallest element in A : call it
ay. Since A is infinite, there is a smallest element, call it as, in A — {a1}, and ay # a4,
If we have chosen distinct points a4, ..., a,, € A, then (since A is infinite)
A —A{ay,...,a,} # 0, sowe let a,1 be the smallest elementin A — {ay, ..., a,} (and a,1 will
be different from all the preceding a;'s). In this way, we have defined (inductively) a,, for all
n € N, and all the a,,'s are different.
Then define a function f : N — Aby f(n) = a,; this f isabijection. e

Definition The set A is called countable if

i) A is finite, or
ii) A isinfiniteand A ~ N.

If A ~ N, we use the symbol X, to denote the cardinal number of A : |N| = X,.

(“N” is “aleph”, the first letter of the Hebrew alphabet. “N,” is read as “aleph-zero”

or “aleph null” or “aleph naught” (more British). This notation was first used by George Cantor
in his groundbreaking work of the theory of infinite sets (in the later part of the 19" century).
We think of X, as an infinite number: it represents the “ number of elements” in the set N (and in
any set equivalent to N).

Examples



Countable Sets

Finite
0 0] =0
{a,b,c} {a,b,c}| =3
Infinite
N
E = {2,4,6,8,...}
Z
Q-i—

Since N~ E~Z~ Q"
we have that R = |N| = |E| = |Z| = |Q"|

The number of elements in each of these sets
is the same: N

Uncountable Sets

P(N) This set is clearly infinite, and N % P(N)
(we proved that for every set A, A % P(A))
so the set is uncountable: |P(N)| # Ry

Note: the textbook also uses the term “denumerable” to mean ““a countable set that is not finite.”
Be aware that different books use the terms “denumerable,” “countable” (and the term
“enumerable”) in slightly different ways.

We proved earlier that a set A is infinite iff there exists a one-to-one function f : N — A.
Informally this means that an infinite set is “big enough” to have a one-to-one “copy” of N put
inside it (the “copy” is range(f)). In the same informal spirit, the next theorem says that a
countable infinite set is “small enough” that a “copy” of the set can be put inside N.

Theorem The set A is countable iff there exists a one-to-one function f : A — N.

Proof (<) If there does exist a one-to-one function f : A — N, then A is equivalent to a
subset of N, namely, A ~ range(f). Ifrange(f) is finite, then A is finite. But if range(f) is an
infinite subset of N, then range(f) ~ N (by the preceding Theorem). By transitivity, then,

A~ N. So A is countable.

(=) Suppose A is countable.



If |A| =0, then A = () and the empty function @ : ) — N is one-to-one.

If |A| =k, then there is a bijection f : A — {1,2,..., k}, and this same
f+ A — Nis one-to-one

If A in not finite, then, by definition of countable, A ~ N, so there exists a
bijection f : A — N, and, of course, this f is one-to-one. e

Corollary A subset of a countable set is countable.

Proof Suppose A is a countable set. Then there is a one-to-one function f : A — N.
If B C A, then look at the restricted function g = f|B. Then g : B — N is one-to-one, so, by
the theorem, B is countable. e

Corollary If B is an uncountable set and B C C, then C'is uncountable. (More informally, a set
that contains an uncountable set is uncountable.)

Proof If C were a countable set, then its subset B would have to be countable (by the preceding
corollary. e

Next we will look at another example of a familiar set that is uncountable. Before doing so, we
need to call attention to a fact about decimal representations of real numbers.

Two different decimal expansions can represent the same real number. For example,
0.10 = 0.100000... = 0.09999... = 0.09 (why?). However, two different decimal
expansions can represent the same real number only if one of the expansions ends in an
infinite string of 0's and the other ends in an infinite string of 9's.



Example The interval (0, 1) is not equivalent to N (and therefore, since the interval (0, 1) is
infinite, it is uncountable).

Consider any f : N — (0,1). We will show f cannot be onto, so that no bijection can
exist between N and (0, 1).

Write decimal expansions of all the numbers in range(f) :
f(l) =T = O.xu 12 13... Tip - - -
f(2) =T9 = 0.1‘21 oo 23 ... Ty« «

f(3) =T3 = 0.1‘31 T32 33 ... T3n - -

fn)=r, =020 Tp2Tp3 ... Tpy - ..
Now define a real number y = 0.y1%2Y3 . . - Yn . . . Dy setting

=1 ifx,, #1
Yn = 2 ifxnn =1

Theny € (0,1) Notice that

i) the decimal expansion of y is different from every decimal expansion in the
list — specifically, the decimal expansions of y and r, disagree at the n™ decimal

place: v, # Tpn.

ii) the decimal expansion of y is not an alternate decimal representation for any
of the r,,'s because 0.y1y2ys3 . . . y,, . . . does not end in either an infinite string of

O'sor9's.

Therefore (Vn) y # r,. In other words, y ¢ ran (f) and therefore f is not onto.

The argument in the example is referred to as “Cantor's diagonal argument.”

Example R is uncountable.

i) One reason: (0,1) C R and a set containing an uncountable set must be
uncountable (see preceding corollary)

if) Another reason: we saw earlier that (0, 1) ~ R and a set equivalent to an
uncountable set is uncountable (why?)

iii) R ~ R x {0}, soR x {0} is uncountable; and R x {0} C R?, so R? s
uncountable. Similarly, R?, R*, ... are each uncountable sets.



Definition If aset A is equivalent to (0, 1), then we say that the cardinal number of the set A
is c. More formally, if A~ (0,1), then |A| = c.

We think of ¢ as an infinite cardinal number: it represents the “number of elements” in the set
(0,1), and in any set equivalent to (0, 1). For example,

¢ =100, D[ = [(a,b)] = |R| = [(0, o0)]

In his development of set theory, Cantor chose the symbol “c” for the cardinality of these sets
because “continuum” was an old name for the real number line.

At this point, we have not given a precise definition for “ < ” between infinite cardinal
numbers. However, since N C R, we intuitively expect that 8 < ¢; and since N % R,
that Ny < ¢. When “ < ” and “ < ” are officially defined, “R, < ¢” turns out to be true.

Cantor conjectured, but was unable to prove, that there are no cardinal numbers of
“intermediate size” between Xgand ¢. This conjecture is called the “Continuum
Hypothesis.” A complete understanding about the Continuum Hypothesis (CH) didn't
come until another half-century passed.

Around 1930, a mathematician named Kurt Godel proved that it is impossible to

prove that CH is false (starting with the ZFC axioms for set theory). On the other hand,
about 1960, a mathematician named Paul Cohen proved that is it impossible to prove that
CH is true (starting with the ZFC axioms for set theory) that CH is true. These results,
taken together, mean that CH is “undecidable” (in terms of the ZFC axioms).

One could go back to the ZFC Axioms and add “CH is true” as a new axiom; or add
“CH is false” as a new axiom. The result would be two “different set theories” (these
are analogous to Euclidean and non-Euclidean geometries that arise from modifying
Euclid's parallel postulate.)

Fortunately, the issue of whether CH is true or false rarely comes up in doing
mathematical research. Therefore there's usually no need to worry about making a
choice between these “competing" versions of set theory.

Example [0,1) U (2,3) ~ (0,1)

z4+3 foro<z<1

A bijection between the two sets is given b =
J 9 y /(@) { se—5 for2<az<3

(Draw a reasonably careful picture!)

Therefore |[0,1) U (2,3)] = |(0,1)| = c.



Theorem Suppose we have finitely many countable sets A1, ..., A,. Then the product set

A x Ay X ... x A, is countable. In other words, the product of a finite number of countable sets
is countable.

Proof Since each set Ay, ..., A, is countable, we know that there exist one-to-one functions:

fi:Ai =N
fo: Ay =N

fii A >N
f’L:A”L'_)N

Let p1, ..., p, be the first n prime numbers and use these to define a function
[ A x Ay x ... x A, — Nare follows:

fl(ay,...,as.cyay)) = p{l(al) R {"V(a"')... -pf;”'(a”) =some n € N.

This function f is one-to-one:
SuUppose (@i, ..., @iy .oy @p) 7 (b1, ooy biy ooy by) € Ay X Ag X ... X A,
Then f( (b, ..., bis .. by) ) = pl'™) « o pf ) pf") = some m e N.

Since (aq, ..., a;, ..., a,) # (b1, ..., bi, ..., by), we know that a; # b; for some i, and,
because f; is one-to-one, this means that f;(a;) # fi(b;).

Therefore p; occurs in the prime factorizations of both m and n, but a different number
to times in each factorization). By the Fundamental Theorem of Arithmetic, we
conclude that m ## n. Therefore f is one-to-one.
Since we have produced a one-to-one function f : A; x Ay x ... X A, — N, a previous theorem
tellsus that A; x Ay x ... x A,, is countable. e
Example Each of the following sets is countable:
N x Z
Q" x{0,1,2} xZx N
Z x wx N

Zxhx{1,2} xQf



Theorem Suppose A;, Ao, ..., A,, ... is asequence of countable sets (one for each n in the index
set N), and suppose that the A,L s are pairwise disjoint. Then [ J°Z | A, is countable.

n=1

Proof Let p, = the n'" prime number. Then pi, po, ..., Py, ... is the infinite sequence of prime
numbers.

Since each set Ay, ..., A,,... is countable, we know that there exist one-to-one functions

f11A1—>N
f21A2—>N

f7AZ—>N

Define a function f : | J72, A, — N as follows:

n=1

if 2 € U,_, Ay, then there is a unique i for which z € A;. Then f;(z) € N and we can
let f(x) = p/".

This f is one-to-one: suppose = # y € |, A

i) If x,y areinthe same set A;. Because f; is one-to-one, f;(z) # fi(y).

Therefore f(z) = f @) # p/ Y= f(y), by the Fundamental Theorem of
Arithmetic (because the exponents for p; are different).

i) If 2 € A;and y € A, (Where i # n), then f(z) = p/"™ and f(y) = pi"™¥.
So f(x) and f(y) factor as powers of two different primes, p; and p,. By the
Fundamental Theorem of Arithmetic, f(z) # f(y).

Therefore f(z) # f(y), so f is one-to-one. Since we have produced a one-to-one function
U1 A, — N, we conclude that | J,~ ; A, is countable. e

The next corollary says that we really do not need the hypothesis “pairwise disjoint” in the
theorem. However it was notationally easier to first prove the theorem with the “pairwise
disjoint” hypothesis, and (now) to worry about what happens if some of the sets have nonempty
intersection.



Corollary Suppose By, Bs, ..., By, ... is a sequence of countable sets (one for each n in the
indexing set N). Then | J;”, B, is countable.

Proof Define A; = B;
Ay =By — By
A3 = Bg .— (Bl U Bg)

Ap =B, — (BiU---UB,_;)

Since each A,, C B, each A, is countable. Also, the A,'s are pairwise disjoint:

Consider A; and A,, wherei <n. Ifx € A;=B; — (B;U---U B;_1), then
x € B;. Sincei<n-—1, z€ ByU---UB,_;. Thereforez ¢ A,, so
A;NA, =0.

Since A4,, C B,,, U,~1A, € U, B,. We claim that these sets are actually equal.

Suppose = € |-, B,,. Pick the smallest n = n for which z € B,,,. Then z ¢ B; for
i < ng and thereforexz € A,, = B,,, — (B1U---U B,,-1),50 z € | ., A,. Therefore

n=1
UfzozlAn = Uff:an'

The theorem then applies to the A,'s, and we conclude that | J,~, B, = |,— A, is countable. e

Corollary If By, Bo, ..., B;. is a finite collection of countable sets, then B; U ... U B, = Uﬁlen
is countable.

(This seems completely plausible, since we have “less than a full sequence** of countable sets. In
order to apply the preceding corollary, we simply “pad out” the sets to form a sequence by
adding empty sets to the list.)

Proof Define B, = () for each n > k. By the preceding corollary, |J,-, B, is countable.
But U,—,B, = Bi1U...UBysince B, =) foreachn > k. e

In words we can summarize the preceding theorem and its corollaries as follows:
the union of countably many countable sets is countable

T

a finite number, or a sequence Ay, ..., A,, ...

Examples i) ForneN, letA, ={1.2 . 2 ntl 1 — thesetof all positive rationals
that can be written with denominator n. Then Q" = the set of all positive rationals = |J,~, 4,
is countable.

ii) The function f(z) = — z is abijection f : Q* — Q~ = the set of all
negative rationals, so Q is countable. Since the set of all rationalsQ = Q~ U {0} U Q™ = the
union of finitely many countable sets, Q is countable.



Transcendental Numbers: An Extended Example

We have proved some not-too-complicated theorems about countable and uncountable sets. But
these elementary facts are enough to let us prove an interesting result about real numbers.

A rational number g is the root of first-degree polynomial equation with integer coefficients,
namely: gx — p =0 (and, conversely, the root of such an equation is a rational number).

We can generalize the idea of a rational number by looking at the real numbers that are roots of
higher degree polynomial equations with integer coefficients.

Definition A real number r is called an algebraic number if there is a polynomial

P(‘T) =ap,z" + anfl.%n_l + ... +aix+ag
with integer coefficients ag, a1, ..., a,, for which P(r) = 0.

A little less formally: an algebraic real number is one that's a root of some polynomial
equation with integer coefficients.

As remarked above: if P(z) is a degree 1 polynomial with integer coefficients, then a root of

P(x) =0 is just a rational number. But, for example all of the following irrationals are also
algebraic numbers.

\/5 is an algebraic number, because it is a root of a quadratic equation with integer
coefficients: 2% — 2 = 0.

% + % 69 is an algebraic number because it is a root of a quadratic equation
with integer coefficients: 32% — 3z — 5 = 0.

\7/5 is algebraic because it is a root of a 7" degree polynomial equation with
integer coefficients: 7 — 2 = 0.

A reasonable question would be: are there any real numbers that are not algebraic?

Theorem Theset A = {r € R: ris algebraic} is countable.

Proof Foreachn > 1, letP, = {a,2" + ... + a1z + ag : an,...,a1,a9 € Z}
= the set of all polynomials of degree < n with integer
coefficients (the degree will be < n if the coefficient a,,
happens to be 0).
To name a polynomial in 7, all we need to know is the list of its coefficients. The list of
coefficients is (n + 1)-tuple of integers: (a,,a, 1, ... ,a0) € Z X ... x Z = Z""'. To put it
another way, the function g : P,, — Z"*! given by

glapx™ + ...+ a1z + ag) = (an, an-1, ..., )
is a bijection.



Therefore P, ~ Z x ... x Z = Z"*! and Z"*! is a finite product of countable sets. So P, is
countable and therefore there is a bijection f : N — P,,.

Thus the polynomials in the set P, can be listed in a sequence:
Pn - { -Pml (.I), Rz,72(:17)7 sy -Pn,k('x)y }
(Here, P, = f(k) = the k' term of the sequence f.)

Each polynomial P, (), Py 2(z), ..., Pyi(x), ... P,y in this list has degree < n, and therefore
each equation P, j(x) = 0 has at most n roots. So the set

Ry,r={reR:P,r(r) =0} ={r:risarootof P,;(z)= 0} is finite

We now put all this together using our knowledge about countable sets.

A= Rur = Ryi UR UL UR, ;U
= {r: risaroot of a polynomial of degree < n with integer coefficients}
is a countable union of countable (finite!) sets; so A,, is countable.
Then [, , A, is countable, since it is a countable union of countable sets.

Butr € |J,—,A, < risinone of the sets A, < r isaroot of a polynomial of degree < n with

n=1

integer coefficients < r is an algebraic number. So A = |J;”, 4, is countable. e

Definition A real number which is not algebraic is called transcendental. (Euler called these
numbers ‘““‘transcendental” because they “transcend the power of algebraic methods.” To be
more politically correct, we might call them ““polynomially challenged.” )

Corollary Transcendental numbers exist.

Proof Let T be the set of transcendental numbers. By definition, R = A U T. Since A
is countable and R is uncountable, T cannot be empty. e

In fact, this two-line argument actually proves much more: not only is T nonempty, but T must be
uncountable! In the sense of one-to-one correspondence, there are “many more” transcendental
numbers than algebraic numbers on the real line R.

This is an example of a “pure existence” proof — it does tell us that any particular number is
transcendental number, and the proof does not give us any computational hints about how to find
a specific transcendental number. To do that is harder. Transcendental numbers were first shown
to exist by Liouville in 1844. (Liouville used other (more difficult) methods. The ideas about
countable and uncountable sets were not developed until the early 1870's by Georg Cantor. See
the biography on the course website.)



Two famous examples of transcendental numbers are e (proven to be transcendental by Hermite
in 1873) and 7 (Lindemann, 1882).

One method for producing many transcendental numbers is contained in a theorem of the Russian
2
mathematician Gelfand (1934). It implies, for example, that \/5\/_ is transcendental.

Gelfand's Theorem If « is an algebraic number, @ # Oor 1, and (3 is algebraic and
not rational, then o is transcendental.

The number e™ is also transcendental. This follows from Gelfand's Theorem (which allows
complex algebraic numbers) if you know something about the arithmetic of complex numbers:

e" = e ""=(em)"" and €™ =cosw +isinT = — 1.
So e™ = (— 1)7%, which is transcendental by Gelfand's Theorem.



