
Equivalent Sets

Definition  Let  be sets. We say that Eß F E F is equivalent to    iff there exists
a bijection .  If is equivalent to ,  we write or or  or0 À E Ä F E F E ¸ F Ð E ¶ F E µ F
something similar: the .notation varies from book to bookÑ

It is intuitively clear that for  sets  iff  and  have the same number of elementsfinite E ¸ F E F Þ
Therefore Ö+ß ,× ¸ Ö"ß #× Ö"ß #ß $× ¸ Ö"ß #×ÞÎ  ( )  but assuming that + Á ,

Theorem  The relation is an  among sets.¸ equivalence relation

Proof   Let ,  be sets.E Fß G

 a) The identity mapping  is a bijection . Therefore , so the0ÐBÑ œ B 0 À E Ä E E ¸ E
 relation is .reflexive

 b) If , then there must exist a bijection  Then the functionE ¸ F 0 À E Ä FÞ
  is also a bijection, so  Therefore the relation is .1 œ 0 À F Ä E F ¸ EÞ" symmetric
 (Therefore, to show two specific sets B are equivalent, it doesn't matter whetherE+8.
 you show that there is a bijection     or that there is a bijection     .from to from toE F F E )

 c  Suppose  and .  Then there are bijections  and .Ñ E ¸ F F ¸ G 0 À E Ä F 1 À F Ä G
 Then is a bijection ( ) so   Therefore the relation is1 ‰ 0 À E Ä G E ¸ GÞcheck!
 .transitive

Examples

 1) Suppose  and that   Then the intervals  and  are equivalent.+ß , − +  ,Þ Ð!ß "Ñ Ð+ß ,Ñ‘
 We can see this using a “straight line” bijection 0 À Ð!ß "Ñ Ä Ð+ß ,Ñ À

     0ÐBÑ œ +  Ð,  +ÑB !  B  "

 



 2)  Suppose  and that   By Example 1), .  Since it's also true-ß . − -  .Þ Ð!ß "Ñ ¸ Ð-ß .Ñ‘
 that  , it follows by symmetry and transitivity that  anyÐ!ß "Ñ ¸ Ð+ß ,Ñ Ð-ß .Ñ ¸ Ð+ß ,Ñ À
 two “open intervals” in  are equivalent.‘

 3) Suppose, in Example 1), we  of  to    Then the graph ofchange the domain 0 ! Ÿ B  "Þ
 will also  the point , and the modified function  is a bijection between0 Ð!ß +Ñ 0include
  and Ò!ß "Ñ Ò+ß ,ÑÞ
                Therefore , and it follows that , just as in Example 2).Ò!ß "Ñ ¸ Ò+ß ,Ñ Ò-ß .Ñ ¸ Ò+ß ,Ñ

 Similarly, we can “tweak” the domain of in Example 1) to show that0

     and that     Ð-ß .Ó ¸ Ò+ß ,Ó Ò-ß .Ó ¸ Ò+ß ,Ó

 4)   because the function  given by  is aÐ!ß "Ó ¸ Ò!ß "Ñ 0 À Ð!ß "Ó Ä Ò!ß "Ñ 0ÐBÑ œ "  B
 bijection.  Using “domain modifications” like to those in Example 3), show that
 .Ð-ß .Ó ¸ Ò+ß ,Ñ

 5) (  because tan (  is a bijection.  By Example 2), this means ß Ñ ¸ À  ß Ñ Ä1 1 1 1
# # # #‘ ‘

 that  interval every Ð+ß ,Ñ ¸ Þ‘

 6)  because the function  where is a bijection.‘ ‘¸ Ð!ß∞Ñ 0 À Ä Ð!ß∞Ñ 0ÐBÑ œ / ßB

Examples

 1)    because the function  given by= ¸ 0 À Ö!ß "ß #ß ÞÞÞß × Ä Ö"ß #ß $ß ÞÞÞß ×
  is a bijection ( !)0ÐBÑ œ B  " check

 2) Let .  Then the function  given by 5 − 0 À Ö"ß #ß $ß ÞÞÞ× Ä Ö5ß #5ß $5ß ÞÞÞ× 0Ð8Ñ œ 58
 is a bijection.  So, for example,  and By ¸ Ö#ß %ß 'ß )ß ÞÞÞ× ¸ Ö"&ß $!ß %&ß '!ß ÞÞÞ×Þ
 symmetry and transitivity, .Ö#ß %ß 'ß )ß ÞÞÞ× ¸ Ö"&ß $!ß %&ß '!ß ÞÞÞ×

 3)    given by  is a bijection, so the0 À ÖÞÞÞß  $ß  #ß  "× Ä Ö"ß #ß $ß ÞÞÞ× 0ÐBÑ œ  B
 set of negative integers is equivalent to the set of positive integers.

 4) As a slightly more complicated example, we can also show that .  We can see ™¸
 this using the bijection  given by0 À Ä ™

   
if  is even

if  is odd.
0Ð8Ñ œ

8

8
8
#

"8
#

 (For example, 0Ð#Ñ œ "ß 0Ð%Ñ œ #ß 0Ð'Ñ œ $ß ÞÞÞß 0Ð"Ñ œ !ß 0Ð$Ñ œ  "ß
  0Ð&Ñ œ  #ß ÞÞÞ Ñ

  :   Suppose 0  is one-to-one 0Ð7Ñ œ 0Ð8ÑÞ

   Notice that if is  and  is ,  then  and , so7 8 0Ð7Ñ  ! 0Ð8Ñ Ÿ !even odd
   .  Similarly, it cannot be that  is odd  and  even.  So0Ð7Ñ Á 0Ð8Ñ 7 8
    are either both even or both odd.7ß8
          



   If  are both even, then .7ß8 0Ð7Ñ œ 0Ð8Ñ Ê Ê 7 œ 87 8
# #œ

   If  are both odd, then 7ß8 0Ð7Ñ œ 0Ð8Ñ Ê "7 "8
# #œ

                    .Ê 7 œ 8
  :  Let 0  is onto ™ D − À™

   if , let then   D  ! 8 œ #D − À 0Ð8Ñ œ œ DÞ #D
#

   if let )  then D Ÿ !ß 8 œ "  #D − Ð À 0Ð8Ñ œ œ DÞ why? " Ð"#DÑ
#

 
  
 5)  We saw earlier (near the end of the notes on functions) that there is a bijection
 the set of all positive integers, so 0 À Ä œ ¸ Þ    

Using the following theorem, we can combine certain sets that we know are equivalent to
conclude that other sets are also equivalent (without needing to explicitly produce a bijection
between them).

Theorem  Suppose that
andE ¸ G

F ¸ H

   Then  i) E‚F ¸ G ‚H
    ii)  If   and  then E ∩ F œ g G ∩ H œ gß E ∪ F ¸ G ∪HÞ

Proof Since  and , we know that there are bijections  and E ¸ G F ¸ H 0 À E Ä G 1 À F Ä HÞ

 i)  Define    by the formula2 À E ‚ F Ä G ‚H À

  For , let Ð+ß ,Ñ − E ‚ F 2Ð+ß ,Ñ œ Ð0Ð-Ñß 1Ð.ÑÑ − G ‚H

     Suppose .  Then  so since  is onto, there is  is onto2 G ‚H À Ð-ß .Ñ − G ‚H - − G 0
    an  for which   Similarly, there is a  for which   Then+ − E 0Ð+Ñ œ -Þ , − F 1Ð,Ñ œ .Þ
  and Ð+ß ,Ñ − E ‚ F 2Ð+ß ,Ñ œ Ð0Ð+Ñß 1Ð,ÑÑ œ Ð-ß .ÑÞ

        Suppose  and  and that2 is one-to-one À Ð+ ß , Ñ Ð+ ß , Ñ − E ‚ F" " # #

 .2Ð+ ß , Ñ œ 2Ð+ ß , Ñ" " # #

  By definition of , this means that , and therefore2 Ð0Ð+ Ñß 1Ð, ÑÑ œ Ð0Ð+ Ñß 1Ð, ÑÑ" " # #

     and   Since  and  are both one-to-one, this gives us that0Ð+ Ñ œ 0Ð+ Ñ 1Ð, Ñ œ 1Ð, ÑÞ 0 1" # " #

      and   Therefore + œ + , œ , Þ Ð+ ß , Ñ œ Ð+ ß , ÑÞ" # " # " " # #

 ii)  domain domain  ,  so    toÐ0Ñ ∩ Ð1Ñ œ E ∩ F œ g 0 ∪ 1 œ 2 E ∪ Fis a function from
     .  (G ∪H There are no points where  and  “disagree” so there is no problem with0 1

      being a function--see Homework 90 ∪ 1 ).  We can write 
if 
if 

2ÐBÑ œ
0ÐBÑ B − E
1ÐBÑ B − FÞ

  

      is    if , then or .2 G ∪ H À C − G ∪ H C − G C − Honto



     If , then since  is onto) there is an  for which C − G Ð 0 + − E C œ 0Ð+Ñ œ 2Ð+Ñ
     and if , then there is a  for which C − H , − F C œ 1Ð,Ñ œ 2Ð,ÑÞ

     In both cases, range . Therefore  is onto.C − Ð2Ñ 2

   is   Suppose  and 2 À Bß C − E ∪ F 2ÐBÑ œ 2ÐCÑÞone-to-one

      If  and  ( ) then  andB − E C − F ß 2ÐBÑ œ 0ÐBÑ − Gor vice versa
    This would mean .  So either  and 2ÐBÑ œ 2ÐCÑ œ 1ÐCÑ − HÞ G ∩ H Á g B C
      are in , or  and  are in .E B C F

      If , then  so, since  is one-to-one,Bß C − E 2ÐBÑ œ 0ÐBÑ œ 0ÐCÑ œ 2ÐCÑ 0
        If , then , so  since  isB œ CÞ Bß C − F 2ÐBÑ œ 1ÐBÑ œ 1ÐCÑ œ 2ÐCÑ B œ C 1
      one-to-one.      ñ

Examples

 1)  
and Ð!ß "Ñ ¸

Ð!ß "Ñ ¸
‘
‘

 
 Part i)( of the Theorem gives us that  that is, the “open box”Ð!ß "Ñ ‚ Ð!ß "Ñ ¸ ‚ ‘ ‘
  in the plane is equivalent to the whole plane .Ð!ß "Ñ# #‘

 Using part ii) of the theorem again, we get that the “open box”  in three-space Ð!ß "Ñ$ $‘
 is equivalent to all of ‘$Þ

 2) Since , we conclude that Ð!ß "Ó ¸ Ð+ß ,Ó Ð!ß "Ó ¸ Ð+ß ,Ó# #

 Ð Ð!ß "Ó# is a “box” in the plane that contains its top and right edges, but not its left or
 bottom edges:  draw it.)

With all these examples, we might be tempted to think that all infinite sets are equivalent but this
is not true.  The next theorem gives us a way to create (infinitely many) nonequivalent infinite
sets.



Theorem  For any set , E E ¸ ÐEÑÞÎ c

Proof  For a finite set  this is clear because if  contains  elements, then  the set of allE E 8 ÐEÑ œc
subsets of  contains  elements.E #8

Suppose, in general, that  is  function  We claim that   and0 0 À E Ä ÐEÑÞ 0any cannot be ontoc
therefore  cannot be a bijection.  This will show that .0 E ¸ ÐEÑÎ c

If , then , so  is a subset of .  Therefore it makes sense to ask + − E 0Ð+Ñ − ÐEÑ 0Ð+Ñ Ec whether or
not + − 0Ð+ÑÞ

 It will help in understanding the proof to keep referring to the following illustration of
  what's going on:

 If , then  E œ Ö"ß #ß $× ÐEÑ œ Ö g ß Ö"×ß Ö#×ß Ö$×ß Ö"ß #×ß Ö"ß $×ß Ö#ß $×ß Ö"ß #ß $× ×Þc

 Suppose (say)  is the function given by0 À E Ä ÐEÑc

    ,  0Ð"Ñ œ Ö"ß #×ß 0Ð#Ñ œ Ö"ß $× 0Ð$Ñ œ Ö"×

  Then     and  " − 0Ð"Ñß # Â 0Ð#Ñ $ Â 0Ð$Ñ

Let .  Then , so   We claim that  is not in the rangeF œ Ö+ − E À + Â 0Ð+Ñ× F © E F − ÐEÑÞ Fc
of .0

 In the illustration, , and, as promised,  is not in the range of .F œ Ö#ß $× F 0

Suppose there were an  for which Then either  or B − E 0ÐBÑ œ FÞ B − F B Â FÞ

 If , then  must satisfy the membership requirement for :  that B − F B F B Â 0ÐBÑÞ
 But then , so this is impossible.B Â 0ÐBÑ œ F

 If , then  fails to meet the membership requirement for : so B Â F B F B − 0ÐBÑÞ
  But then  which is impossible.B − 0ÐBÑ œ F

Either way,  that there is an  such that  , so no the assumption leads to a contradictionB 0ÐBÑ œ F
such  can exist.  Therefore  is  onto.   B 0 ñnot

Example    By the theorem, )./ c ¸ Ð

Notice that there  a  ( ) map   is one-to-one not onto 0 À Ä Ð Ñ Ð c  for example, let
0Ð8Ñ œ Ö8× − Ð Ñc  Ñ 0 À E Ä ÐEÑ.    If  is such a one-to-one function, thenc
E ¸ 0ÒEÓ œ Ð0Ñ © ÐEÑ E ÐEÑrange .  So  is  equivalent to a  of but c calways subset never
equivalent to the whole set .  Intuitively, this means that  is a “bigger” infinite set thanc cÐEÑ ÐEÑ
E.

We can continue to apply the power set operation over and over to get
  ),  ) , ) ( ) ), .../ / / c  c  c c  c c  c c c ¸ Ð Ð Ñ ¸ Ð Ð Ñ Ð Ð Ñ ¸ Ð Ð Ñ
and thus create a sequence of “larger” and “larger” nonequivalent infinite sets.



We proved that for every set , .  In particular,   However, we can show/E E ¸ ÐEÑ ¸ Ð ÑÞÎ c  c 
that  equivalent to another familiar set:  .  Recall that  denotes the set of allc Ð Ñ Ö!ß "× Ö!ß "×is  

functions   Such an  is a  for which every term has value , or :0 À Ä Ö!ß "×Þ 0 ! " sequence

 if , we have values where each or 0 − Ö!ß "× 0Ð"Ñß 0Ð#Ñß 0Ð$Ñß ÞÞÞß 0Ð8Ñß ÞÞÞ 0Ð8Ñ œ ! "

In other words,  is the set of all “binary sequences.”Ö!ß "×

Theorem  c Ð Ñ ¸ Ö!ß "×

Proof  Define a function as follows:F c À Ö!ß "× Ä Ð Ñ

   if  ,   then  0 − Ö!ß "× Ð0Ñ œ Ö8 − À 0Ð8Ñ œ "× − Ð Ñ F  c 
 
 If  is a binary sequence, then  is the subset of  consisting of all those  for which0 Ð0Ñ 8F 
 the  term of the sequence is .  For example suppose  has values8 " 0>2

   0Ð"Ñß 0Ð#Ñß 0Ð$Ñß 0Ð%Ñß 0Ð&Ñß 0Ð'Ñß ÞÞÞ
     ll ll ll ll ll ll
      ! ß " ß " ß ! ß ! ß " ß ÞÞÞ

 then FÐ0Ñ œ Ö#ß $ß 'ß ÞÞÞ ×Þ

F  is :   if  and  then there is an for whichone-to-one 0ß 1 − Ö!ß "× 0 Á 1ß 8 − 0Ð8Ñ Á 1Ð8ÑÞ

Suppose  and   Then  but , so .  Similarly if0Ð8Ñ œ " 1Ð8Ñ œ !Þ 8 − Ð0Ñ 8 Â Ð1Ñ Ð0Ñ Á Ð1ÑF F F F
0Ð8Ñ œ ! 1Ð8Ñ œ " 8 Â Ð0Ñ 8 − Ð1Ñ and , then  but ,F F
so .F FÐ0Ñ Á Ð1Ñ

F is onto:   Suppose , that is, suppose  Define a binary sequence  as follows:E − Ð Ñ E © Þ 0c  

   
if 
if 

0Ð8Ñ œ
" 8 − E
! 8 Â E

Then  and, by definition, .     0 − Ö!ß "× Ð0Ñ œ E ñ F

Finite Sets

We have informally used the terms “finite set” and “infinite set.”  We now make a precise
definition.

Definition  For each let .  A set  is called 5 − ß œ Ö"ß #ß ÞÞÞß 5× E 5 finite if  orE œ g
if  Ðb5 − ÑE ¸ Þ 5

  is called  if  is   (that is, if and /E E E Á g Ða5 − ÑE ¸ Þinfinite not finite  5

Definition   For a finite set E À



  i) if  we say that  is the E œ gß ! cardinal number of hasE Ð Eor that  
  , and write cardinality 0Ñ lEl œ !Þ

  ii) or that  if we say that  is the E ¸ ß 55 cardinal number of hasE Ð E
   and write cardinality 5Ñß lEl œ 5Þ

We already have a lot of  ideas about how finite sets behave.  But now that we have anintuitive
“official” definition of “finite set,” each of these intuitive statements should be proved:  this will
show that the  of finite set correctly “captures” the formal definition intuitive idea of finite set.  It
turns out that we  prove that our informal ideas about finite sets are actually theorems usingcan
the official formal definition for finite sets.
(As we shall see later: we also have some intuitive ideas about infinite sets.  But for infinite sets
our intuition is sometimes wrong: for infinite sets, careful proofs become very important.)

Here is a list of familiar properties of finite sets.  They are all proved in Section 5.1 of the
textbook; many of the proofs use induction.   We are not going to go over those proofs doing
them all is a tedious, it takes a lot of time, and the results, in the end, are just what we thought
intuitively would be true.  But we will prove one important fact about finite sets, below.

Theorems About Finite Sets

1.  If  is finite and , then is finite;  a finite set is never equivalent to a properE E ¶ F F
subset of itself.

2.  If  is finite and , then  is finite, and E B Â E E ∪ ÖB× lE ∪ ÖB×l œ lEl  "Þ

3.  If  is finite and , then  is finite and E B − E E  ÖB× lE  ÖB×l œ lEl  "Þ

4.  Every subset of a finite set is finite.

5.  If  and are finite:E F

  a)  lE ∪ Fl œ lEl  lFl  lE ∩ Fl
  b)  If then E ∩ F œ gß lE ∪ Fl œ lEl  lFlÞ

6. If  is finite, then  is finite, and |E ÐEÑ ÐEÑl œ # Þc c lEl

7.  If  and  are finite sets, then  is finite.8 − E ß ÞÞÞß E E ∪ E ∪ ÞÞÞ ∪ E " 8 " # 8

(“ ”)A finite union of finite sets is finite.

There is one additional theorem about finite sets that is quite intuitive and which turns out to be
unexpectedly useful.

Theorem  (The Pigeonhole Principle)  Suppose and that   If , then 8ß < − 0 À Ä Þ 8  < 0  8 <

is not one-to-one.



The idea behind the name is that if there are  “pigeons” to be put into  “pigeonholes”  and there8 <
are more pigeons  than there are pigeonholes , then at least two pigeons must go into theÐ8Ñ Ð<Ñ
same pigeonhole.  The Pigeonhole Principle is also called the .Dirichlet Box Principle

Proof  The proof is done by induction on .  Suppose  represents a natural number and that <
0 À Ä Þ Ða8 − TÐ8Ñß  8 <   We want to prove ) where

   is the statement:    if then cannot be one-to-one.TÐ8Ñ 8  <ß 0

Since  represents a natural number so  and so   Therefore our induction starts with< <   " 8   #Þ
8 œ #Þ

Base case  If , then  and   Therefore  must be constant:8 œ # < œ " 0 À œ Ö"ß #× Ä Ö"× œ Þ 0 # "

0Ð"Ñ œ " œ 0Ð#ÑÞ 0So  is not one-to-one.

Assume that  is true for some particular value That is, our  isTÐ8Ñ 8 œ 5Þ induction hypothesis

(*)  If  (where  is any natural number , then  is not one-to-one.0 À Ä <  5Ñ 0 5 <

We want to prove:

       If (where  is any natural number then  is not one-to-one0 À R Ä <  5  "Ñß 05" <

       We prove this by contradiction.

 Suppose there  a one-to-one function  , where .   (**)is 0 À R Ä 5  "  <5" <

  0 À Ö"ß #ß ÞÞÞß 5ß 5  "× Ä Ö"ß #ß ÞÞÞß <×

0Ð5  "Ñ "ß #ß ÞÞÞß <Þ 5  " Ð Ñ is one of the numbers   from the first set leaving Delete 5

and  from the second set  (leaving ).0Ð5  "Ñ  Ö0Ð5  "Ñ×<

Then restricting the function  to the smaller domain we have a one-to-one function0

  1 œ 0l À Ä  Ö0Ð5  "Ñ×  5 5 <

The set on the right the codomain of  has one less element than , so there is aÐ œ 1Ñ <

bijection 2 À  Ö0Ð5  "Ñ× Ä Þ < <"

Composing functions, we get a - -  function one to one 2 ‰ 1 À Ä ß 5 <"

Since we have that , and the existence of such a one-to-one function5  "  <ß 5  <  "
2 ‰ 1  contradicts the induction hypothesis (*).

So no such function as (**) can exist  which says that  is true. TÐ5  "Ñ

By PMI,  is true for all .    TÐ8Ñ 8 − ñ

As mentioned earlier, this “obvious”  Pigeonhole Principle has lots of applications.  Before we
look at a few examples, we note one simple corollary.



Corollary  If  and , then :ß ; − : Á ; Î̧  : ;Þ

Proof  One of  or  is larger than the other say  If  is any function, the, by: ;  :  ;Þ 0 À Ä : ;

the Pigeonhole Principle,  cannot be one-to-one, so  cannot be a bijection.   0 0 ñ

The corollary tells us that a set  cannot be equivalent to both and if otherwise,E : Á ; À : ;

by transitivity, we would have    This means that the  number of  is well- : ;¸ Þ Ecardinal
defined:  if then  is impossible if lEl œ :ß lEl œ ; ; Á :Þ

Example  There are two people in Missouri who have the same number of hairs on their heads.

In 2007, the census gives the estimated Missouri population as 5,878,415. Also, various studies
indicate that the average number of hairs on a human head is around 150,000, with, of course,
lots of variation.  (Incidentally, the average number varies with the color of the hair!)  But it
seems safe to say that every human head has less than 1,000,000 hairs.

Let the population of Missouri be  (where is some number ). Let8 8  &ß )()ß %"&
< œ "ß !!!ß !!!Þ "ß #ß $ß ÞÞÞß 8Þ Number the people as 

Define a function where the number of hairs on 's0 À Ö"ß #ß $ß ÞÞÞß 5ß ÞÞÞ8× Ä Ö"ß #ß ÞÞÞß <× 0Ð5Ñ œ 5
head.  Since , the Pigeonhole Principle says that  cannot be one-to-one, that is, there are at8  < 0
least two Missourians with the same number of hairs on their heads.

In this example, the “pigeons” are the people in Missouri;  you can think of the “pigeonholes” as
boxes numbered .  Each person is placed in the box corresponding to the number of hairs"ß ÞÞÞß <
on the head.

In using the Pigeonhole Principle, sometimes some cleverness is required:  the key thing (after
realizing that the Pigeonhole Principle might solve the problem) is to clearly identify the
“pigeons” and the “pigeonholes.”



Example  Suppose  is a set of  natural numbers.  Show that there is a subset of  whose sumW R W
is divisible by RÞ

For instance, if , then  and the subset  works, and ifW œ Ö&ß "#ß "*ß $"× R œ % Ö&ß "#ß $"×
W œ Ö#ß "*ß $$×ß R œ $ Ö$$× Ö#ß "*ß $$×Þ then  and the subset  works; so does the subset 

Proof  Let  where each Consider the  subsetsW œ Ö+ ß + ß ÞÞÞß + × + − Þ R" # 3R


Ö+ ×ß Ö+ ß + ×ß ÞÞÞß Ö+ ß + ß ÞÞÞß + ×ß ÞÞÞß Ö+ ß + ß ÞÞÞß + ×Þ" " # " # 3 " # R

If any one of the sums  is divisible by  then the subset+  +  ÞÞÞ  + Rß" # 3

Ö+ ß + ß ÞÞÞß + × RÞ" # 3  works and we are done.  So assume that  of these sums is divisible by none
Therefore  of these sums has one of the remainders  when divided by each "ß #ß ÞÞÞß R  " RÞ

Since there are sums          but only  possible remainders,R + ß +  + ß ÞÞÞß +  ÞÞÞ  + R  "" " # " R

two of these sums must have the same remainder when divided by R  (the Pigeonhole Principle).
In other words, there are two sums for which

  +  ÞÞÞ  + ´ +  ÞÞÞ  +  ÞÞÞ  +" 3 R " 3 5

Subtracting  from both sides, we get that+  ÞÞÞ  +" 3

  ! ´ +  ÞÞÞ  +R 3" 5

so   Therefore the subset  works.RlÐ+  ÞÞÞ  + ÑÞ Ö+ ß ÞÞÞß + ×3" 5 3" 5

Here, in Case ii), the “pigeons” are the  sets  R Ö+ ×ß ÞÞÞ ß Ö+ ß + ß ÞÞÞß + ×" " # R   and the “pigeonholes”
are the possible remainders:  each set is put into a “pigeonhole” determined by theR  "
remainder when its sum is divided by RÞ



Example   Prove that there is a natural number whose digits are all 's and which is divisible"
by 7777.

Consider the 7778 numbers "ß ""ß """ß ÞÞÞß ""ÞÞÞ""""
          Å this last number contains

                           digits, all ((() œ "Þ

Assign to each number ( ) in the list, its remainder (“ ) when divided by“pigeon” the pigeonhole”
(((( (((( Ð< œ !ß "ß ÞÞÞß ((('Ñß ((().  There are only  possible remainders  or  so two of the  listed
numbers have the same remainder (the Pigeonhole Principle).

Suppose these two are  and , where Then , so  is divisible by .+ , +  ,Þ , ´ + ,  + ((((((((

However,  not all the digits of  are 's: if and,  + " , œ """ ÞÞÞ """""
      + œ """""
            then  ends in a string of ',  + œ """ ÞÞÞ !!!!! ! =

In fact, if there are  's in  and there are   's in ,  then  consists of    1's followed6 " ,ß 5 " + ,  + 6  5
by   's.  We can “cancel out” all the 's in  by dividing by   so  is a natural5 ! ! ,  + "! À5 , +

"!5

number all of whose digits are .  Is it " still divisible by ?((((

Notice that , so that  for some (((( œ ( † "" † "!" ,  + œ (((( † 7 œ ( † "" † "!" † 7 7 − Þ

Therefore  for some  , + (†""†"!"†7
"! # &5 5 5œ œ ( † "" † "!" † 4 œ (((( † 4 4 − Ð we know  is a, +

"!5

natural number; the 's and 's in the denominator must cancel out with 's and 's in the prime# & # &
factorization of 7 À œ 4 −7

# &5 5 ÑÞ

So  is a natural number with only 's for digits and divisible by ., +
"!5

" ((((



Example  ( )taken from the Spring 2008 Missouri MAA Mathematics Competition  Consider the
set of points   and  are both integers  in .  Imagine having a palette™ ™ ‘ ‘‚ œ ÖÐDß AÑ − À D A ×# #

containing 4 colors. You choose what color to paint the points in , in any way you like.™ ™‚

Prove that, when you're done, there must be four points in  which all have the same color™ ™‚
and which form the vertices of a rectangle.

Proof  (We will use the pigeonhole principle, twice.)

1) For any set of 5 points in , at least two must have the same color ( ).™ ™‚ pigeonhole principle
For example, in any “column of 5”  two points must haveœ ÖÐBß !Ñß ÐBß "Ñß ÐBß #Ñß ÐBß $Ñß ÐBß %Ñ×
the same color.

2) For any “column of 5”, there are 4 ways to color the first point ; then 4 (independent)ÐBß "Ñ
ways to color the second point ; ...; and finally 4 (independent) ways to color the 5th pointÐBß #Ñ
ÐBß &Ñ % † % † % † % † % œ % œ "!#%.  Altogether, there are possible color patterns for a&

“column of 5.”

3) Look at the first  “columns of ”"!#& & À
 
 Column 1 œ ÖÐ"ß !Ñß Ð"ß "Ñß Ð"ß #Ñß Ð"ß $Ñß Ð"ß %Ñ×
 Column  # œ ÖÐ#ß !Ñß Ð#ß "Ñß Ð#ß #Ñß Ð#ß $Ñß Ð#ß %Ñ×
 ã
 Column  "!#& œ ÖÐ"!#&ß !Ñß Ð"!#&ß "Ñß Ð"!#&ß #Ñß Ð"!#&ß $Ñß Ð"!#&ß %Ñ×

Two of these “columns of 5” must have exactly the same color pattern (by the
Pigeonhole principle, used again).  Suppose two such columns are

 Column  4 œ Ö Ð4ß !Ñß Ð4ß "Ñß Ð4ß #Ñß Ð4ß $Ñß Ð4ß %Ñ×
 Column  5 œ Ö Ð5ß !Ñß Ð5ß "Ñß Ð5ß #Ñß Ð5ß $Ñß Ð5ß %Ñ×

Our first observation 1) tells us that two points in Column  have the same color:  suppose4
they are  and    Ð4ß7Ñ Ð4ß 8Ñ Ðwhere ! Ÿ 7  8 Ÿ %ÑÞ

Since Column  has the same color pattern,  and are the same color as5 Ð5ß7Ñ Ð5ß 8Ñ
Ð4ß7Ñ Ð4ß 8Ñ and .

Then  and  are the same color and are the vertices ofÐ4ß7Ñß Ð4ß 8Ñß Ð5ß7Ñß Ð5ß 8Ñ
a rectangle.  ñ

Notice that , 4, .  If there had been,the number of colors is not important for the argument
say 2008 colors available in the palette, then simply consider “columns of 2009” rather thanß
“columns of 5”.  For each column, there are  possible coloring patterns.#!!)#!!*

Look at the    first  “columns of 9.”  #!!)  "#!!* All the logic in the argument
works in exactly the same way (but the 4 points that you find might turn out to be the vertices of a

very large rectangle!)



Infinite Sets

We have defined finite and infinite sets and stated some properties of finite sets.  One of these
properties of finite sets, the Pigeonhole Principle, turned out to be particularly useful so we
digressed a little to look at how the Pigeonhole Principle could be used.  We now turn our
attention to infinite sets, where our intuitive ideas can lead us astray: for example, a “whole” set
(like ) can be equivalent to one of its proper subsets like   So we have to be „Ð œ Ö#ß %ß 'ß ÞÞÞ×ÑÞ
careful not to jump to conclusions when making statements about infinite sets.

Theorem  The set  is infinite if and only if there exists a one-to-one function E 0 À Ä EÞ

Proof   ( )  .  ThenÊ Suppose  is infiniteE

      so we can pick an element E Á g + − EÞ"

  since E Á Ö+ × Ö+ × ¸" " "
       and  is not finite.E
 So    so we can pick an E Ö+ × Á g + − E  Ö+ ×" # "

     (and + Á + Ñ# "

 E Á Ö+ ß + × Ö+ ß + × ¸" # " # # since 
  and is not finite.E
 So    so we can pick an E Ö+ ß + × Á g + − E  Ö+ ß + ×" # $ " #

     (and )+ Á + ß + Á +$ " $ #

Continue to define the 's by induction.  Once  is defined. then+ +8 8

 since E Á Ö+ ß + ß ÞÞÞß + × Ö+ ß + ß ÞÞÞß + × ¸" # 8 " # 8 8
           and  is not finite.E
 So   so we can pick an E Ö+ ß + ß ÞÞÞß + × Á g + − E  Ö+ ß + ß ÞÞÞß + ×" # 8 8" " # 8

     (and )+ Á + ß + ß ÞÞÞß +8" " # 8

In this way we have inductively defined  for all  and the terms in the sequence+ 8 −8 
+ ß + ß ÞÞÞß + ß ÞÞÞ" # 8  are all different (each was chosen in a way that makes it different from all its
predecessors). Define  by     Since the 's are all different,  is one-to-0 À Ä E 0Ð8Ñ œ + Þ + 0 8 8

one.

For ( ), we use the contrapositive: suppose  is finite and show that no such one-to-oneÉ E
function  can exist.0

      If  , then there are  functions   (E œ g 0 À Ä Eno  see earlier discussion of ] Ñ\

 
      If } then there is a bijection E ¸ œ Ö"ß #ß ÞÞÞß 5 ß 2 À E Ä 5 5

   a one-to-one function then we could restrict theIf there were 0 À Ä Eß
  domain of  to get a “new” one-to-one function 0 1 œ 0l À Ä EÞ 5" 5"

  Then  is one-to-one which contradicts the Pigeonhole2 ‰ 1 À Ä  5" 5

   PrincipleÞ

So, if  is finite, there is no one-to-one function E 0 À Ä EÞ ñ



Note:  A function is a sequence in The terms of the sequence are0 À Ä E EÞ
+ œ 0Ð"Ñß + œ 0Ð#Ñß ÞÞÞß + œ 0Ð8Ñß ÞÞÞ 0" # 8 , and if  is one-to-one, then all these terms are different.
So the preceding theorem could be paraphrased as:   is infinite iff there exists a sequence ofE
distinct terms in .+ ß + ß ÞÞÞß + ß ÞÞÞ E" # 8

Example  The point here is just to illustrate that our official definition of “infinite” gives results
that coincide with some of our intuitive ideas about what sets are infinite.

  1) The function  given by  is one-to-one.  By the preceding theorem,0 À Ä 0Ð8Ñ œ 8 ‘
  is infinite.‘

 2) The function  given by  is one-to-one, so the interval  is0 À Ä Ð!ß "Ñ 0Ð8Ñ œ Ð!ß "Ñ "
8

 infinite.

 3) Suppose  is infinite, so that there is a one-to-one function .  If ,E 0 À Ä E E © F
 then we can view  also as being a one-to-one function   So  is also0 0 À Ä FÞ F
 infinite.  

The following theorem tells us that if a   is “too big to be finite,” then  issubset E © E
equivalent to the whole set .   For example, consider the set  is infinite „  „œ Ö#ß %ß 'ß ÞÞÞ× © .   
so (according to the following theorem)  is equivalent to all of .  In the case of  , this„  „
statement is rather obvious: we can easily see that given by is a bijection.0 À Ä 0Ð8Ñ œ #8 „
But we want to prove it for an arbitrary infinite subset of .

Theorem  If is infinite and , then E E © E ¸ Þ 

Proof     By the Well-Ordering Principle (WOP), there is a smallest element in call itE Á g Þ E À
+ Þ E + ß E  Ö+ ×ß + Á +" # " # "ÞSince  is infinite, there is a smallest element, call it in and 
           If we have chosen distinct points , then (since  is infinite)+ ß ÞÞÞß + − E E" 8

E  Ö+ ß ÞÞÞß + × Á gß + E  Ö+ ß ÞÞÞß + × Ð +" 8 8" " 8 8"so we let  be the smallest element in and  will
be different from all the preceding 's .  In this way, we have defined (inductively)   for all+ Ñ +3 8

8 − +, and all the 's are different.8

 Then define a function by   this  is a bijection.     0 À Ä E 0Ð8Ñ œ + à 0 ñ 8

Definition  The set  is called  ifE countable

   i)   is finite, orE
   ii)  is infinite andE E ¸ Þ

If , we use the symbol  to denote the cardinal number of E ¸ i E À l l œ i Þ ! !

( “ ” is “aleph”, the first letter of the Hebrew alphabet.  “ ” is read as “aleph-zero”i i!

or “aleph null”  or “aleph naught” (more British).  This notation was first used by George Cantor
in his groundbreaking work of the theory of infinite sets (in the later part of the 19  century).th

We think of as an infinite number:  it represents the “ number of elements” in the set  (and ini! 
any set equivalent to ).

Examples



              Countable Sets
  
       Finite 
       
               g lgl œ !
       
        Ö+ß ,ß -× lÖ+ß ,ß -×l œ $
       
        
              Infinite       

                                       
                



„
™


œ Ö#ß %ß 'ß )ß ÞÞÞ×



     
    Since  „ ™ ¸ ¸ ¸ 

       we have that    i œ l l œ l l œ l l œ l l!
 „ ™ 

        The number of elements in each of these sets
     is the same:  i!

  Uncountable Sets

      This set is clearly infinite, and c   c Ð Ñ ¸ Ð ÑÎ
        Ð Ñ Ñwe proved that for  set , every E E ¸ ÐEÎ c
so the set is uncountable:  l Ð Ñl Á ic  !

Note: the textbook also uses the term “denumerable” to mean “a countable set that is  finite.”not
Be aware that different books use the terms “denumerable,” “countable” (and the term
“enumerable”) in slightly different ways.

We  proved earlier that a set  is  iff there exists a one-to-one function .E 0 À Ä Einfinite 
Informally this means that an infinite set is “big enough” to have a one-to-one “copy” of  put 
inside it the “copy” is range     In the same informal spirit, the next theorem says that aÐ Ð0ÑÑÞ
countable infinite set is “small enough” that a “copy” of the set can be put inside .

Theorem  The set  is countable iff there exists a one-to-one function E 0 À E Ä Þ

Proof   ( )  If there does exist a one-to-one function , then  is equivalent to aÉ 0 À E Ä E
subset of , namely,  range .   If range  is finite, then  is finite.  But if range  is an E ¸ Ð0Ñ Ð0Ñ E Ð0Ñ
infinite subset of , then range   (by the preceding Theorem)   By transitivity, then, Ð0Ñ ¸ Þ
E ¸ Þ E    So  is countable.

 ( )  Suppose  is countable.Ê E



  If  then  and the empty function   is one-to-one.lEl œ ! ß E œ g g À g Ä 
  If  ,  then there is a bijection , and this samelEl œ 5 0 À E Ä Ö"ß #ß ÞÞÞß 5×
   is one-to-one0 À E Ä 
  If  in not finite, then  by definition of countable , so there exists aE ß ß E ¸ 
   bijection , and, of course, this  is one-to-one.   0 À E Ä 0 ñ

Corollary  A subset of a countable set is countable.

Proof  Suppose  is a countable set.  Then there is a one-to-one function E 0 À E Ä Þ
If , then look at the restricted function   Then  is one-to-one, so,  byF © E 1 œ 0lFÞ 1 À F Ä 
the theorem, is countable.    F ñ

Corollary If  is an  set and , then is uncountable.  (F F © G Guncountable More informally, a set
that contains an uncountable set is uncountable.)

Proof  If were a countable set, then its subset  would have to be countable (by the precedingG F
corollary.     ñ

Next we will look at another example of a familiar set that is uncountable.  Before doing so, we
need to call attention to a fact about decimal representations of real numbers.

Two  decimal expansions can represent the  real number.  For example,different same
!Þ"! œ !Þ"!!!!!ÞÞÞ œ !Þ!****ÞÞÞ œ !Þ!*

  (why?).  However, two different decimal
expansions can represent the same r umber only if one of the expansions ends in aneal n
infinite string of 's and the other ends in an infinite string of 's.! *



Example  The interval  is  equivalent to  (and therefore, since the interval  isÐ!ß "Ñ Ð!ß "Ñnot 
infinite, it is ).uncountable

 Consider any .  We will show  cannot be onto, so that no bijection can0 À Ä Ð!ß "Ñ 0
 exist between  and . Ð!ß "Ñ

   Write decimal expansions of all the numbers in rangeÐ0Ñ À
  
    .    0Ð"Ñ œ < œ ! B B B Þ Þ Þ B Þ Þ Þ" "" "# "$ "8

      .    0Ð#Ñ œ < œ ! B B B Þ Þ Þ B Þ Þ Þ# #" ## #$ #8

      .   0Ð$Ñ œ < œ ! B B B Þ Þ Þ B Þ Þ Þ$ $" $# $$ $8

            .
           .
           .
      .0Ð8Ñ œ < œ ! B B B Þ Þ Þ B Þ Þ Þ8 8" 8# 8$ 88

     ã
 Now define a real number by settingC œ !.  . . .  . . . C C C C" # $ 8

    
if 1
if C œ " B Á

C œ # B œ "
8 88

8 88

 Then   Notice thatC − Ð!ß "Ñ

  i) the decimal expansion of  is  from every decimal expansion in theC different
  list specifically, the decimal expansions of  and disagree at the  decimal C < 88

th

  place:   .C Á B8 88

  ii) the decimal expansion of  is  for anyC not an alternate decimal representation
  of the 's because  does not end in either an infinite string of< !8 .  . . .  . . .C C C C" # $ 8

  's or 's.! *

 Therefore .  In other words,  ran ( ) and therefore  is not onto.Ða8Ñ C Á < C Â 0 08

 The argument in the example is referred to as “Cantor's diagonal argument.”

Example    is uncountable.‘

  i) One reason:   and a set containing an uncountable set must beÐ!ß "Ñ © ‘
  uncountable (see preceding corollary)

  ii) Another reason:  we saw earlier that  and a set equivalent to anÐ!ß "Ñ ¸ ‘
  uncountable set is uncountable ( ?)why

        iii)  so  is uncountable;  and , so  is‘ ‘ ‘ ‘ ‘ ‘¸ ‚ Ö!×ß ‚ Ö!× ‚ Ö!× © # #

  uncountable.  Similarly, , , ... are each uncountable sets.‘ ‘$ %



Definition  If a set  is equivalent to , then we say that the cardinal number of the set E Ð!ß "Ñ E
is .  More formally, if , then - E ¸ Ð!ß "Ñ lEl œ -Þ

We think of   as an infinite cardinal number:  it represents the “number of elements” in the set-
Ð!ß "Ñ Ð!ß "Ñ, and in any set equivalent to . For example,

   - œ lÐ!ß "Ñl œ lÐ+ß ,Ñl œ l l œ lÐ!ß∞Ñl‘

In his development of set theory, Cantor chose the symbol “ ” for the cardinality of these sets-
because “ ontinuum” was an old name for the real number line.c

 At this point, we have not given a precise definition for  “ ” between infinite cardinal
 numbers.   However, since we intuitively expect that and since ,/ ‘  ‘© ß i Ÿ -à ¸!

  that .   When “ ” and “ ” are officially defined  “ ” turns out to be true.i  - Ÿ  ß i  -! !

 Cantor conjectured, but was , that there are  cardinal numbers ofunable to prove no
 “intermediate size”  and .  This conjecture is called the “between Continuumi -!

 .”   A complete understanding about the Continuum Hypothesis (CH) didn'tHypothesis
 come until another half-century passed.

 Around 1930, a mathematician named Kurt Godel proved that it is ¨ impossible to
  (starting with the ZFC axioms for set theory).  On the other hand,prove that CH is false
 about 1960, a mathematician named Paul Cohen proved that is it impossible to prove that
  (starting with the ZFC axioms for set theory) that CH is true.  These results,CH is true
 taken together, mean that CH is “undecidable”  (in terms of the ZFC axioms).

 One could go back to the ZFC Axioms and add “CH is true” as a new axiom;  or add
 “CH is false” as a new axiom.  The result would be two “different set theories” (these
 are analogous to Euclidean and non-Euclidean geometries that arise from modifying
 Euclid's parallel postulate.)

 , the issue of whether CH is true or false rarely comes up in doingFortunately
 mathematical research.  Therefore there's usually no need to worry about making a
 choice between these “competing" versions of set theory.

Example  Ò!ß "Ñ ∪ Ð#ß $Ñ ¸ Ð!ß "Ñ

 A bijection between the two sets is given by 
for 

for 
0ÐBÑ œ

 B  ! Ÿ B  "

B  #  B  $ " "
# #
" "
# #

( )Draw a reasonably careful picture!

 Therefore lÒ!ß "Ñ ∪ Ð#ß $Ñl œ lÐ!ß "Ñl œ -Þ



Theorem  Suppose we have  countable sets .  Then the product setfinitely many E ß ÞÞÞß E" 8

E ‚ E ‚ ÞÞÞ ‚ E" # 8 is countable.  In other words, the product of a  number of countable setsfinite
is countable.

Proof  Since each set   is countable, we know that there exist one-to-one functions:E ß ÞÞÞß E" 8

  0 À E Ä" " 
  0 À E Ä# # 
   ã
  0 À E Ä3 3 
   ã
  0 À E Ä8 8 

Let  be the first  prime numbers and use these to define a function: ß ÞÞÞß : 8" 8

0 À E ‚ E ‚ ÞÞÞ ‚ E Ä" # 8  are follows:

 ... ... some 0Ð Ð+ ß ÞÞÞß + ß ÞÞÞß + Ñ Ñ œ : † † : † : œ 8 − Þ" 3 8 "
0 Ð+ Ñ 0 Ð+ Ñ 0 Ð+ Ñ

3 8
" " 3 3 8 8 

This function  is one-to-one:0

 Suppose Ð+ ß ÞÞÞß + ß ÞÞÞß + Ñ Á Ð, ß ÞÞÞß , ß ÞÞÞß , Ñ − E ‚ E ‚ ÞÞÞ ‚ E" 3 8 " 3 8 " # 8

 Then ... ... some 0Ð Ð, ß ÞÞÞß , ß ÞÞÞß , Ñ Ñ œ : † † : † : œ 7 − Þ" 3 8 "
0 Ð, Ñ 0 Ð, Ñ 08Ð, Ñ

3 8
" " 3 3 8 

 Since , we know that  for some , and,Ð+ ß ÞÞÞß + ß ÞÞÞß + Ñ Á Ð, ß ÞÞÞß , ß ÞÞÞß , Ñ + Á , 3" 3 8 " 3 8 3 3

   is one-to-one, this means that .because 0 0 Ð+ Ñ Á 0 Ð, Ñ3 3 3 3 3

 Therefore  occurs in the prime factorizations of both  and , but a different number: 7 83

 to times in each factorization).  By the Fundamental Theorem of Arithmetic, we
 conclude that   Therefore  is one-to-one.7 Á 8Þ 0

Since we have produced a one-to-one function ,  a previous theorem0 À E ‚ E ‚ ÞÞÞ ‚ E Ä" # 8 
tells us that  is countable.    E ‚E ‚ ÞÞÞ ‚ E ñ" # 8

Example  Each of the following sets is countable:

    ™‚

    ™  ‚ Ö!ß "ß #× ‚ ‚

   ™ = ‚ ‚

   ™ ‚ g ‚ Ö"ß #× ‚ 



Theorem  Suppose  is a  of countable sets (one for each  in the indexE ßE ß ÞÞÞß E ß ÞÞÞ 8" # 8 sequence
set ), and suppose that the 's are pairwise disjoint.  Then  is countable. E E8 88œ"

∞
Proof   Let the prime number.  Then  is the infinite sequence of prime: œ 8 : ß : ß ÞÞÞß : ß ÞÞÞ8 " # 8

>2

numbers.

Since each set   is countable, we know that there exist one-to-one functionsE ß ÞÞÞß E ß ÞÞÞ" 8

  0 À E Ä" " 
  0 À E Ä# # 
   ã
  0 À E Ä3 3 
   ã
  0 À E Ä8 8 
   ã

Define a function  as follows:0 À E Ä
8œ"
∞

8 

 if then there is a   for which .  Then  and we canB − E ß 3 B − E 0 ÐBÑ −
8œ"
∞

8 3 3unique 

            let 0ÐBÑ œ : Þ3
0 ÐBÑ3

This  is one-to-one:  suppose 0 B Á C − E Þ
8œ"
∞

8

  i)  If  are in the  set .  Because  is one-to-one, Bß C E 0 0 ÐBÑ Á 0 ÐCÑÞsame 3 3 3 3

  Therefore , by the Fundamental Theorem of0ÐBÑ œ : Á : œ 0ÐCÑ3 3
0 3ÐBÑ 03ÐCÑ

  Arithmetic  (because the exponents for are differ nt).: /3

  
  ii) If and where then  and B − E C − E Ð 3 Á 8Ñß 0ÐBÑ œ : 0ÐCÑ œ : Þ3 8 3

03ÐBÑ 0 ÐCÑ
8
8

  So  and  factor as powers of two  primes,  and By the0ÐBÑ 0ÐCÑ : : Þdifferent 3 8

  Fundamental Theorem of Arithmetic, 0ÐBÑ Á 0ÐCÑÞ

Therefore , so  is one-to-one.  Since we have produced a one-to-one function0ÐBÑ Á 0ÐCÑ 0
0 À E Ä E ñ 

8œ" 8œ"
∞ ∞

8 8, we conclude that  is countable.   

The next corollary says that we really do not need the hypothesis “pairwise disjoint” in the
theorem.  However it was notationally easier to first prove the theorem with the “pairwise
disjoint” hypothesis, and (now) to worry about what happens if some of the sets have nonempty
intersection.



Corollary   Suppose  is a  of countable sets (one for each  in theF ßF ß ÞÞÞß F ß ÞÞÞ 8" # 8 sequence
indexing set )  Then  is countable. Þ F

8œ"
∞

8

Proof   Define  E œ F" "

  E œ F F# # "

  E œ F  ÐF ∪ F Ñ$ $ " #

   ã
  E œ F  ÐF ∪â∪F Ñ8 8 " 8"

   ã

Since each , each  is countable.  Also, the 's are pairwise disjoint:E © F E E8 8 8 8

 Consider  and  where  If thenE E 3  8Þ B − E œ F  ÐF ∪â∪F Ñß3 8 3 3 " 3"

   Since ,    Therefore soB − F Þ 3 Ÿ 8  " B − F ∪â∪F Þ B Â E ß3 " 8" 8

 E ∩ E œ gÞ3 8

Since   We claim that these sets are actually equal.E © F ß E © F Þ8 8 8 88œ" 8œ"
∞ ∞ 

 Suppose   Pick the   for which .  Then  forB − F Þ 8 œ 8 B − F B Â F
8œ"
∞

8 ! 8 3smallest !

  and therefore , so .  Therefore3  8 B − E œ F  ÐF ∪â∪F Ñ B − E! 8 8 " 8 " 88œ"
∞

! ! !


  
8œ" 8œ"
∞ ∞

8 8E œ F Þ

The theorem then applies to the 's, and we conclude that  is countable.    E F œ E ñ8 8 88œ" 8œ"
∞ ∞ 

Corollary   If is a  collection of countable sets, then F ßF ß ÞÞÞß F F ∪ ÞÞÞ ∪ F œ F" # 5 " 5 88œ"
5finite 

is countable.

(This seems completely plausible, since we have “less than a full sequence“ of countable sets.  In
order to apply the preceding corollary, we simply “pad out” the sets to form a sequence by
adding empty sets to the list.)

Proof   Define  for each By the preceding corollary,   is countable.F œ g 8  5Þ F8 88œ"
∞

But  since  for each     
8œ"
∞

8 " 5 8F œ F ∪ ÞÞÞ ∪ F F œ g 8  5Þ ñ

 In words we can summarize the preceding theorem and its corollaries as follows:
 the union of  countable sets is countablecountably many
               Å
  a  number, or a sequence finite E ß ÞÞÞß E ß ÞÞÞ" 8

Examples    i)  For let   the set of all positive rationals8 − ß E œ Ö Þ ß ÞÞÞß ß ß ÞÞÞ × œ 8
" # 8 8"
8 8 8 8

that can be written with denominator .  Then the set of all positive rationals  8 œ œ E
8œ"
∞

8
is countable.
  ii) The function  is a bijection the set of all0ÐBÑ œ  B 0 À Ä œ  

negative rationals, so  is countable.  Since the set of  rationals  the     all œ ∪ Ö!× ∪ œ
union of finitely many countable sets,  is countable.



Transcendental Numbers: An Extended Example

We have proved some not-too-complicated theorems about countable and uncountable sets.  But
these elementary facts are enough to let us prove an interesting result about real numbers.

A rational number  is the root of  polynomial equation with  coefficients,:
; first-degree integer

namely:     (and, conversely, the root of such an equation is a rational number).;B  : œ !

We can generalize the idea of a rational number by looking at the real numbers that are roots of
higher degree integer polynomial equations with  coefficients.

Definition    A real number  is called an  if there is a polynomial< algebraic number
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with  coefficients  for which integer + ß + ß ÞÞÞß + T Ð<Ñ œ !Þ! " 8

A little less formally: an algebraic real number is one that's a root of some polynomial
equation with integer coefficients.

 
As remarked above:  if  is a  polynomial with integer coefficients, then a root ofTÐBÑ degree 1
TÐBÑ œ ! is just a rational number.  But, for example all of the following irrationals are also
algebraic numbers.

   is an algebraic number, because it is a root of a  equation with integer# quadratic
 coefficients:  .B  # œ !#

  is an algebraic number because it is a root of a quadratic equation" "
# ' '*

 with integer coefficients:  $B  $B  & œ !Þ#

  is algebraic because it is a root of a  degree polynomial equation with( # (th

 integer coefficients:  .B  # œ !(

A reasonable question would be:  ?are there any real numbers that are not algebraic

Theorem   The set  is algebraic is countable. ‘œ Ö< − À < ×

Proof  For each ,  let 8   " œ Ö+ B  ÞÞÞ  + B  + À + ß ÞÞÞß + ß + − ×c ™8 8 " ! 8 " !
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              the set of all polynomials of degree with integerœ Ÿ 8
         coefficients  (the degree will be  if the coefficient  8 +8

        happens to be !).
To name a polynomial in , all we need to know is the list of its coefficients.  The list ofc8

coefficients is -tuple of integers    ... .  To put itÐ8  "Ñ À Ð+ ß + ß ÞÞÞ ß + Ñ − ‚ ‚ œ8 8" !
8"™ ™ ™

another way, the function given by1 À Äc ™8
8"
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is a bijection.



Therefore ...  and  is a finite product of countable sets.  So  isc ™ ™ ™ ™ c8 8
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countable and therefore there is a bijection .0 À Ä c8

Thus the polynomials in the set can be listed in a sequence:c8

   c8 8ß" 8ß# 8ß5œ Ö T ÐBÑß T ÐBÑß ÞÞÞß T ÐBÑß ÞÞÞ ×

( )Here, the term of the sequence .T œ 0Ð5Ñ œ 5 08ß5
>2

Each polynomial  in this list has degree , and thereforeT ÐBÑß T ÐBÑß ÞÞÞß T ÐBÑß ÞÞÞ T Ÿ 88ß" 8ß# 8ß5 8ß5

each equation  has   .   So the setT ÐBÑ œ !8ß5 at most roots8
 
  is a root of   is V œ Ö< − À T Ð<Ñ œ !× œ Ö< À < T ÐBÑ œ !×8ß5 8ß5 8ß5‘ finite

We now put all this together using our knowledge about countable sets.

 E œ V œ V ∪ V ∪ ÞÞÞ ∪ V ∪ ÞÞÞ8 8ß5 8ß" 8ß# 8ß55œ"
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                  is a root of a polynomial of degree  with integer coefficientsœ Ö< À < Ÿ 8 ×

is a countable union of countable (finite!) sets so  is countable.à E8

Then  is countable, since it is a countable union of countable sets.
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But  is in one of the sets  is a root of a polynomial of degree  with< − Í < E Í < Ÿ 8
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∞

8 8
integer coefficients  is an algebraic number.  So  is countable.   Í < œ E ñ 

8œ"
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Definition   A real number which is  algebraic is called . (not transcendental Euler called these
numbers “transcendental” because they “transcend the power of algebraic methods.”  To be
more politically correct, we might call the  “polynomially challenged.”  7 )

Corollary  Transcendental numbers exist.

Proof   Let  be the set of transcendental numbers. By definition, .  Since “ ‘  “ œ ∪
is countable and  is uncountable,   cannot be empty. ‘ “ ì
 
In fact, this two-line argument actually proves much more: not only is  , but  must be“ “nonempty
uncountable!  In the sense of one-to-one correspondence, there are “many more” transcendental
numbers than algebraic numbers on the real line .‘

This is an example of a “pure existence” proof it does tell us that any particular number is
transcendental number, and the proof does not give us any computational hints about how to find
a specific transcendental number.  To do that is harder.  Transcendental numbers were first shown
to  by Liouville in 1844. (exist Liouville used other (more difficult) methods.  The ideas about
countable and uncountable sets were not developed until the early 1870's by Georg Cantor.  See
the biography on the course website.)



Two famous examples of transcendental numbers are  (proven to be transcendental by Hermite/
in 1873) and  (Lindemann, 1882).1

One method for producing many transcendental numbers is contained in a theorem of the Russian

mathematician Gelfand (1934).  It implies, for example, that is transcendental. #
 #

Gelfand's Theorem  If  is an algebraic number, 0 or , and  is algebraic α α "Á " and
not rational,  then  is transcendental.α"

The number  is also transcendental. This follows from Gelfand's Theorem (which allows/1 

complex algebraic numbers)   you know something about the arithmetic of complex numbers:if
 
  =  and    cos sin/ œ / Ð/ Ñ / œ  3 œ  "Þ1 1 1 13 3 3 3#

1 1
  So ,  which is transcendental by Gelfand's Theorem/ œ Ð  "Ñ Þ1 3


