
Constructing the Integers

We have seen how we can start with the (informal) system of integers,  and use it to build new™
algebraic systems .  The members of are equivalence classes formed from the integers.  If™ ™7 7

you think of the members of  as “numbers” in this new system, then these “new numbers” are™7

equivalence classes formed out of “old numbers” (integers).

When we constructed the whole number system , we used the intuitive, informal system of=
whole numbers as the guide for what we wanted to build.  Starting with set theory, we built a
collection of sets   in which we were able to define  and  (using the “successor set”=  †
operation).  This collection of sets turned out to “act just like“ the informal system of whole
numbers.  Therefore we agree to use  as our official, formal definition of the system of whole=
numbers.

This time we will build on what we have already constructed.  We will start with the whole
number system  and, using the behavior of the informal system of integers as our guide, we will=
create a new system in which we can add and multiply objects.  When we're finished, this new
system will “act just like” the informal system of integers. Since behavior is what's important, we
can then agree to use this new system as our official, formal definition for .™

The objects in this new system will be  of  of whole numbers. Eachequivalence classes pairs
object (equivalence class) in the system will be an integer. Since each equivalence class is a set,
and the members of each equivalence class are pairs of whole numbers (each of which is a set!)
each integer will be a set in line with our view that “everything in mathematics is a set.”

As with , verifying every detail gets tedious, so we will only check some of them  but enough,= 
hopefully, to convince you that what's omitted is really just “more of the same.”

Before we begin, here's a bit of historical perspective.  The negative integers (and ) developed!
much later than the natural numbers.  In Europe, they were only accepted in the 17  century.th

When they first began to appear on the scene,  negative integers seemed absurd.  This was
because they were unfamiliar “new numbers” and it seemed like they we claiming to represent
something “less than nothing.”  Of course, that point of view seems quaint to us;  our schooling
“conditions” us to the idea of negative integers very early and it gives us very practical uses
for them.  It seems perfectly natural for us to answer the question “How much did the
temperature change from 1 a.m. to 2 a.m.?” by saying  “ 3° F.”  Similarly, we attach different
physical meanings to the velocities ft/s and  ft/s.$#  $#

Why did people create these “unnatural” negative integers?   Because some very simple equations
“demanded” solutions.  In , we can solve equations like but not other equally simple= B  % œ &
equations like .  On aesthetic grounds, mathematicians found that inventing “newB  & œ %
numbers” so that all equations like  (where  would have a solution wasB 7 œ 8 7ß 8 − Ñ=
preferable to saying that some such equations don't have a solution.  Oddly, this aesthetic feeling
was valuable because these “new numbers” turned out to be useful!

We begin our construction by thinking about what we want to build into this new system;  we
look to the informal system of integers for guidance.  An equation like  has no solutionB  & œ %
in the whole number system, but it should have solution “ ” in the integers.  So we want the%  &
system we construct to contain an “answer” for the subtraction “ .”  In fact, it should contain%  &
an “answer” for every subtraction problem “ ” where  +  , +ß , − Þ=



In effect, early mathematicians simply said “OK, we simply declare that there are some new
numbers called  and here's how they work:   , ... ”  And this is, in fact, "ß  #ß ÞÞÞ %  & œ  "
exactly behavior we want.  But rather than just announcing “we declare that there are such
numbers...”, our goal is to show how to  these numbers using things we already have (thedefine
whole numbers).

The preceding two paragraphs contain the idea we will use.  For example, we want to have a
number “ .” Starting with , we could try saying that the  of whole%  & Ð%ß &Ñ= ordered pair
numbers is going to be called an integer.  It is the integer which answers the subtraction problem
“ .”  Similarly, we might think of the ordered pair  as being the integer  (it is the%  & Ð&ß %Ñ "
“answer” to ).  So perhaps we could just simply say “an integer is an ordered pair of whole&  %
numbers.”

This seems promising,  it's just a little too simple: this approach would tell us that each of thebut
different pairs  

      answer to the subtraction “ ”Ð%ß &Ñ Ð œ %  & Ñ
      answer to the subtraction “ ”Ð*ß "!Ñ Ð œ *  "! Ñ
     answer to the subtraction “ ”Ð#"ß ##Ñ Ð œ #"  ## Ñ

  ã
is a  integer and that's not we want: all those subtractions should “be answered” by thedifferent
same integer.

So we devise an equivalence relation on   that puts all these pairs= =‚

   ÞÞÞß Ð%ß &Ñß ÞÞÞß Ð*ß "!Ñß ÞÞÞß Ð#"ß ##Ñß ÞÞÞ

into the same equivalence class:   .Ö ÞÞÞß Ð!ß "Ñß ÞÞÞß Ð%ß &Ñß ÞÞÞß Ð*ß "!Ñß ÞÞÞß Ð#"ß ##Ñß ÞÞÞ ×

This  of pairs of whole numbers is what will be called .equivalence class the integer 1

Let's enlarge this idea: suppose are whole numbers.  Thinking again for guidance the+ß ,ß -ß .
informal system of integers, we see that if  , then we would want think of  and+  , œ -  . Ð+ß ,Ñ
Ð-ß .Ñ Ð+ß ,Ñ Ð-ß .Ñ as representing the same integer.  We do this by saying that  and  are equivalent
if +  . œ ,  -Þ

All this motivates the following formal definition of the set of integers, .™

Definition   For  and ,  we define a relation  byÐ+ß ,Ñ Ð-ß .Ñ − ‚ ¶= =

     iff  Ð+ß ,Ñ ¶ Ð-ß .Ñ +  . œ ,  -Þ

Note:  why not say “  iff ”?  Looking at the precedingÐ+ß ,Ñ ¶ Ð-ß .Ñ +  , œ -  .
paragraphs, that would say exactly what we want to say.  We motivated what we're doing
by thinking about subtraction in the informal system of integers. But when we come to
write the official definition to use in constructing the integers, we have only   to work=
with, and subtraction isn't defined in  :  we're not allowed to say “a b” or “c d”=  
for  So, we sneakily say the same thing in a way that  allowed in by+ß ,ß -ß . − Þ = =is



switching over to the language of addition:  and  always  always defined+  . ,  - are
in  .=

What we have done to this point is the real, creative part of the job.  (You should go back and
reread it each day for a few days; especially, reread it after we've finished all the detailed work
that comes next.)  Now, we need

 i)   to check that  really is an equivalence relation on   , and¶ ‚= =
 ii)  to define a way to add and multiply the equivalence classes
 iii) confirm that this new formal algebraic system  really does “act just like” the™
 informal system of integers.

Doing all this occupies several pages.
 

Theorem I1  ¶ ‚ is an equivalence relation on the set .= =

Proof   Suppose .Ð+ß ,Ñß Ð-ß .Ñß Ð/ß 0Ñ − ‚= =

 a)  is reflexive:    because we know that  in .¶ Ð+ß ,Ñ ¶ Ð+ß ,Ñ +  , œ ,  + =

 (Notice: here, and in the work that follows, all the calculations involving whole numbers
  are done  , and they are justified because of   +ß ,ß ÞÞÞ in theorems that we already proved=
 for example, the commutative, associative laws for addition andare true in =
 multiplication,the distributive law, cancellation laws for addition and multiplication
 in , ...= )
 
 b)  is symmetric:   If , then  because¶ Ð+ß ,Ñ ¶ Ð-ß .Ñ Ð-ß .Ñ ¶ Ð+ß ,Ñ
    if  , then  in .+  . œ ,  - -  , œ .  + =

 c) is transitive:   Suppose 
 

¶
Ð+ß ,Ñ ¶ Ð-ß .Ñ
Ð-ß .Ñ ¶ Ð/ß 0Ñ

    so we know that  
 (1)

   (2) +  . œ ,  -
-  0 œ .  /

    We need to prove that  .  (*)Ð+ß ,Ñ ¶ Ð/ß 0Ñ

    If we add  to both sides of (1) and rearrange (using the/  0
    commutative and associative laws in )  we get=

     +  .  Ð/  0Ñ œ ,  -  Ð/  0Ñ

     Ð+  0Ñ  Ð.  /Ñ œ Ð,  /Ñ  Ð-  0Ñ

    But (from Equation (2), so substituting gives.  / œ -  0

     .Ð+  0Ñ  Ð.  /Ñ œ Ð,  /Ñ  Ð.  /Ñ

    The  (which we provedcancellation law for addition



    for ) lets us cancel  from both sides leaving= Ð.  /Ñ

       (*),  and that is what we needed to prove.  +  0 œ ,  / ñ

What do the equivalence classes of  look like?  For example, here is the equivalence class¶
containing the pairs that are equivalent to the pair Ð!ß $Ñ À

   Ò Ð!ß $ÑÓ œ ÖÐ!ß $Ñß Ð"ß %Ñß Ð#ß &Ñß Ð$ß 'Ñß ÞÞÞ ß Ð8ß 8  $Ñß ÞÞÞ× Ð8 − Ñ=

Of course,  is just one possible representative of this equivalence class.  WeÐ!ß $Ñ
could write the same equivalence class as  or  or ...ÒÐ$ß 'ÑÓ ÒÐ")ß #"ÑÓ

Going back to the intuitive motivation, we think of this equivalence class as “the
answer” to the all the problems      , that is, we want to!  $ß "  %ß #  &ß $  ' ÞÞÞ
say that  .   Similarlythis equivalence class is the integer  $

   Ò Ð"ß !ÑÓ œ Ö Ð"ß !Ñß Ð#ß "Ñß Ð$ß #Ñß Ð%ß $Ñß ÞÞÞ ß Ð8  "ß 8Ñß ÞÞÞ× Ð8 − Ñ=

      Ò Ð!ß !ÑÓ œ Ö Ð!ß !Ñß Ð"ß "Ñß Ð#ß #Ñß Ð$ß $Ñß ÞÞÞß Ð8ß 8Ñß ÞÞÞ× Ð8 − Ñ=

Our motivation indicates that we want to think of these equivalence classes as being
the integer the integer " ! and .

But here we are getting just a little ahead of ourselves.  We will do a little more work
before we assign integer names to all the equivalence classes.

Although it's not necessary for our work, it might also help to picture these equivalence classes
geometrically:

The set   can be pictured as those points in the first quadrant of  for which both= = ‘‚ #

coordinates are whole numbers. Two of these points  and are equivalent iffÐ+ß ,Ñ Ð-ß .Ñ
+  . œ ,  - ,  . œ +  - œ " Ð+ß ,Ñ iff   iff   iff the straight line through  and, .

+ -

Ð-ß .Ñ " has slope .  ( )How do we know that ?+  - Á !

Therefore  for  consists of all   thatan equivalence class whole number pairs¶ Ð+ß ,Ñ
happen to lie on a line of slope 1.  The  on the part of the straight line in the figuredots
below show some of the members in the equivalence class ÖÐ!ß #Ñß Ð"ß $Ñß Ð#ß %Ñß ÞÞÞ ×
( ).  Thethe parts of the straight line between dots are included just as a visual aid
particular equivalence class pictured is the one that will be   .the integer  #



 
Exercise:  In the picture, equivalence classes that contain points of the -axis are (intuitively)C
going to correspond to which integers?   The picture also suggests the following theorem.

Theorem I2  Every equivalence class  contains exactly one ordered pair that has a Ò Ð+ß ,ÑÓ !
coordinate.   (If we use that pair to represent the equivalence class, then every equivalence class
can be written either as  or  for some .ÒÐ!ß 5ÑÓ ÒÐ5ß !ÑÓ 5 − = )

Proof   ( )  If  in , then there is a for whichRecall the definition of .Ÿ in = + Ÿ , 5 −= =
+  5 œ , œ ,  !Þ Ð+ß ,Ñ ¶ Ð!ß 5Ñ ÒÐ+ß ,ÑÓ œ ÒÐ!ß 5ÑÓÞThis means that , so 
 If  in , then there is a  for which .  Then,  + 5 − ,  5 œ + œ +  != =
Ð+ß ,Ñ ¶ Ð5ß !Ñ ÒÐ+ß ,ÑÓ œ ÒÐ5ß !ÑÓÞ, so 

Uniqueness À
Ð5ß !Ñ Ð7ß !Ñ
Ð!ß 5Ñ Ð!ß7Ñ
Ð5ß !Ñ Ð!ß7Ñ

Suppose are in the same equivalence class. 
 and or
 and or
 and 




In the first two cases, it  must be that so the pairs are the same; in the third case, it must be5 œ 7
that  Therefore one equivalence class cannot contain two  pairs with a 5 œ 7 œ !Þ !different
coordinate.      ñ

According to the theorem, we can list  the  equivalence classes as follows:all different

   ...     .ß ÒÐ!ß $ÑÓß ÒÐ!ß #ÑÓß ÒÐ!ß "ÑÓß ÒÐ!ß !ÑÓß ÒÐ"ß !ÑÓß ÒÐ#ß !ÑÓß ÒÐ$ß !ÑÓß ÞÞÞ

Officially, these equivalence classes are going to be “the integers.”   Here, finally, is the
definition. 

Definition   ™ œ ¶the set of equivalence classes of 
  œ Ð ‚ ÑÎ ¶ Þ= =
 A member of  is called an )™ integer Ðso an integer is one of the equivalence classes



Arithmetic in ™

We want to define addition and multiplication in .   When we defined new addition and™
multiplication operations in , we used special symbols for them:  and . Strictly speaking,™7 Š 
we should do something similar now to avoid confusing the “new addition and multiplication”
(to be defined in ) with the “old addition and multiplication” already defined in .™ =

However, by this time, we are probably sophisticated enough to avoid using that notational
crutch.  So we will simply write  and for the new addition and multiplication we are going to †
define in .  The context  (whether the symbols    and    stand between two integers or™  †
between two whole numbers) determines whether they represent operations in  or in .™ =

Definition  Suppose  and .  DefineÒÐ+ß ,ÑÓ − ÒÐ-ß .ÑÓ −™ ™

1)   Addition in ™ À ÒÐ+ß ,ÑÓ  ÒÐ-ß .ÑÓ œ ÒÐ+  -ß ,  .ÑÓÞ

The “ ”  between the  on the left is the new addition being defined in integers
™;  the “ 's” between the   on the right refer to +ß -ß ,ß .whole numbers
addition as defined already in .=

2)   Multiplication in ™ À ÒÐ+ß ,ÑÓ † ÒÐ-ß .ÑÓ œ ÒÐ+-  ,.ß ,-  +.ÑÓ

Here is the motivation for the definition.  We are thinking of the integers ÒÐ+ß ,ÑÓ
and  as providing “answers” for the subtraction problems andÒÐ-ß .ÑÓ Ð+  ,Ñ
Ð-  .Ñ in the informal system of integers.  In that informal system,
Ð+  ,ÑÐ-  .Ñ œ Ð+-  ,.Ñ  Ð,-  +.Ñ.  So the product should be the integer
that “answers” the subtraction problem .Ð+-  ,.Ñ  Ð,-  +.Ñ

We pointed out earlier (when defining addition and multiplication in  that ™7Ñ when operations
are defined in terms of representatives of equivalence classes  (such as ), we must check+ß ,ß -ß .
that the operations are  (independent of the representatives chosen from eachwell-defined
equivalence class).

For example  and  .Ð"ß $ÑÓ œ ÒÐ#ß %ÑÓ ÒÐ$ß &ÑÓ œ ÒÐ'ß )ÑÓ

Does the definition of integer multiplication applied to   give the sameÒÐ"ß $ÑÓ † ÒÐ$ß &ÑÓ
answer as it does when applied to   ?    We hope so and that's what itÒÐ#ß %ÑÓ † ÒÐ'ß )ÑÓ 
means to say that “  is well-defined in . ”† ™



Theorem I3  Addition and multiplication in  are well-defined.™

Proof   Assume that       that is,      
  and  (1)

(2) ÒÐ+ß ,ÑÓ œ ÒÐ-ß .ÑÓ +  . œ ,  -
ÒÐ/ß 0ÑÓ œ ÒÐ1ß 2ÑÓ /  2 œ 0  1

1) :  We need to show thatAddition

  ,  or equivalently, thatÒÐ+ß ,ÑÓ  ÒÐ/ß 0ÑÓ œ ÒÐ-ß .ÑÓ  ÒÐ1ß 2ÑÓ
     (*)ÒÐ+  /ß ,  0ÑÓ œ ÒÐ-  1ß .  2ÑÓ

Adding equations (1) and (2) and rearranging the terms (using the commutativity and
associativity of addition   ) givesin =

 .Ð+  /Ñ  Ð.  2Ñ œ Ð,  0Ñ  Ð-  1Ñ

which says that (*) is true.

2) :  ( )Multiplication Here, the details are messier, but not hard.

We need to show that

  ,  that isÒÐ+ß ,ÑÓ † ÒÐ/ß 0ÑÓ œ ÒÐ-ß .ÑÓ † ÒÐ1ß 2ÑÓ

     So we need to show thatÒÐ+/  ,0ß ,/  +0ÑÓ œ ÒÐ-1  .2ß .1  -2ÑÓÞ

 )  and that means we need to show thatÐ+/  ,0ß ,/  +0Ñ ¶ Ð-1  .2ß .1  -2 ß
 
       (*)Ð+/  ,0Ñ  Ð.1  -2Ñ œ Ð,/  +0Ñ  Ð-1  .2Ñ

Since  and , we see that +  . œ ,  - /  2 œ 0  1

      /Ð+  .Ñ  0Ð-  ,Ñ  -Ð/  2Ñ  .Ð1  0Ñ
œ /Ð,  -Ñ  0Ð+  .Ñ  -Ð0  1Ñ  .Ð/  2Ñ

Multiplying out both sides of this equation and using commutativity and associativity in
= to rearrange gives

 Ð+/  ,0  .1  -2Ñ  Ð./  -0  -/  .0Ñ
œ Ð,/  +0  -1  .2Ñ  Ð./  -0  -/  .0Ñ 

 
Using the cancellation law for addition in  gives=

    +/  ,0  .1  -2 œ ,/  +0  -1  .2 Ð‡Ñ

which is just what we needed to prove    Þ ñ



Example  Now that addition and multiplication are defined,  is an algebraic system. We will™
give the names  and  to the integers  and   We can then prove that all the Axioms! " ÒÐ!ß !ÑÓ ÒÐ"ß !ÑÓÞ
F1-F5  and F6  are true in   ( )w ™ these are the same axioms we talked about when discussing ™7

 

 F1   There are elements   and  in  and  ! " ! "™ Á

  Let say  and Bß Cß D − À B œ ÒÐ+ß ,ÑÓß C œ ÒÐ-ß .ÑÓ D œ ÒÐ/ß 0ÑÓ™

 F2 & F2 Addition and multiplication in  are associativew ™

 Proof that  ÐB  CÑ  D œ B  ÐC  DÑ

 ÐB  CÑ  D œ Ð ÒÐ+ß ,ÑÓ  ÒÐ-ß .ÑÓ Ñ  ÒÐ/ß 0ÑÓ œ ÒÐ+  -ß ,  .ÑÓ  ÒÐ/ß 0ÑÓ 

  œ Ò ÐÐ+  -Ñ  /ß Ð,  .Ñ  0ÑÓ œ Ò Ð+  Ð-  /ÑÑß ,  Ð.  0ÑÑÓ
     because addition is associative in Å =

  œ Ò Ð+ß ,ÑÓ  Ð ÒÐ-ß .ÑÓ  ÒÐ/ß 0ÑÓ Ñ œ B  ÐC  DÑ

 Proof that ÐB † CÑ † D œ B † ÐC † DÑ

 ÐB † CÑ † D œ Ð ÒÐ+ß ,ÑÓ † ÒÐ-ß .ÑÓ Ñ † ÒÐ/ß 0ÑÓ œ ÒÐ+-  ,.ß ,-  +.ÑÓ † ÒÐ/ß 0ÑÓ

 œ Ò Ð+-/  ,./  ,-0  +.0ß ,-/  +./  +-0  ,.0ÑÓ
 and

 B † ÐC † DÑ œ ÒÐ+ß ,ÑÓ † Ð ÒÐ-ß .ÑÓ † ÒÐ/ß 0ÑÓ Ñ œ ÒÐ+ß ,ÑÓ † ÒÐ-/  .0ß ./  -0ÑÓ

  œ Ò Ð+-/  +.0  ,./  ,-0ß ,-/  ,.0  +./  +-0ÑÓ

  œ Ò Ð+-/  ,./  ,-0  +.0ß ,-/  +./  +-0  ,.0ÑÓ

 (So the two computations come out the same using commutativity of addition and
 multiplication in .= )

 F3 & F3     Addition and multiplication in  are commutativew ™

  that Proof B  C œ C  B

B  C œ ÒÐ+ß ,ÑÓ  ÒÐ-ß .ÑÓ œ ÒÐ+  -ß ,  .ÑÓ œ ÒÐ-  +ß .  ,ÑÓ
              Å
   because addition is commutative in =

œ ÒÐ-ß .ÑÓ  ÒÐ+ß ,ÑÓ œ C  B

Proof that B † C œ C † B



B † C œ ÒÐ+ß ,ÑÓ † ÒÐ-ß .ÑÓ œ ÒÐ+-  ,.ß ,-  +.ÑÓ 
œ ÒÐ-+  .,ß .+  -,ÑÓ œ ÒÐ-ß .ÑÓ † ÒÐ+ß ,ÑÓ œ C † B

   because multiplication and addition are commutative in  Å =

F4  The distributive law holds in ™

Proof that B † ÐC  DÑ œ B † C  C † D

B † ÐC  DÑ œ Ò † Ð Ò † Ð+ß ,ÑÓ Ò Ð-ß .ÑÓ  Ò Ð/ß 0ÑÓ Ñ œ Ð+ß ,ÑÓ Ò Ð-  /ß .  0ÑÓ
  œ Ò Ð+-  +/  ,.  ,0 ß ,-  ,/  +.  +0ÑÓ

and

B † C  B † D œ Ò † Ò †Ð+ß ,ÑÓ Ò Ð-ß .ÑÓ  Ð+ß ,ÑÓ Ò Ð/ß 0ÑÓ
œ Ò Ð+-  ,.ß ,-  +.ÑÓ  Ò Ð+/  ,0ß ,/  +0ÑÓ

  œ Ò Ð+-  ,.  +/  ,0ß ,-  +.  ,/  +0ÑÓ
  œ Ò Ð+-  +/  ,.  ,0 ß ,-  ,/  +.  +0ÑÓ

 So the two computations come out the same (what properties of arithmetic
 in  are used?)=

 
F5 & F5   Neutral elements for addition and multiplicationw  

Proof that B  œ B!

B  œ ÒÐ+ß ,ÑÓ  ÒÐ!ß !ÑÓ œ ÒÐ+  !ß ,  !ÑÓ œ ÒÐ+ß ,ÑÓ œ B!
       Å
   Property of   in ! =

Proof that B † œ B"

B † œ ÒÐ+ß ,ÑÓ † ÒÐ"ß !ÑÓ œ ÒÐ+ † "  , † !ß , † "  + † !ÑÓ œ ÒÐ+ß ,ÑÓ œ B"
                  Å
   Properties of addition and multiplication in =

F6   Existence of additive inverses

Suppose We want to show that there is a for which B œ ÒÐ+ß ,ÑÓ − Þ C − B  C œ™ ™ !

Choose Then C œ ÒÐ,ß +ÑÓÞ B  C œ ÒÐ+ß ,ÑÓ  ÒÐ,ß +ÑÓ œ ÒÐ+  ,ß ,  +ÑÓ
    
    œ ÒÐ!ß !ÑÓ
    Å
    because Ð+  ,ß ,  +Ñ ¶ Ð!ß !Ñ
    since in  .+  ,  ! œ ,  +  ! =

Because  is an algebraic system in which all the Axioms F1-F5  and F6 are true,  then all the™ w

definitions and theorems we proved from those axioms must be true in .  (™ Here is a list of those



theorems from the earlier notes; but here theorems have been renumbered to fit into the
numbering sequence for the “integer theorems” in this set of notes).  Therefore we know all of
the following things about :™

 Theorem I4  ÐaBÑÐb CÑ B  C œ!  !

 Definition I5   If , then the unique  for which  is denoted by .B − C B  C œ  B™ !
 
 Definition I6   We define  in  as follows:   subtraction ™ B  C œ B  Ð  CÑ

 Theorem I7  If ,  then B − B † œ™ ! !

 Theorem I8   (   Various “sign rules”)  For all :Bß Cß D − ™

   i)     ÐB  CÑ œ  B  C
   ii)    Ð  BÑ œ B
   iii)      Ð  BÑC œ  ÐBCÑ
      iv)      BÐ  CÑ œ  ÐBCÑ
   v)      Ð  BÑÐ  CÑ œ BC
   vi)     BÐC  DÑ œ BC  BD

 Theorem I9  For all : :  if ,  then Bß Cß D − B  C œ B  D C œ DÞ™
    

™ is  a field.  (not Why?  In terms of the formal definition of integers, show why  cannotÒÐ#ß !ÑÓ
have a multiplicative inverse:  if  then ...  ?   Therefore axiom F6  isÒÐ7ß 8ÑÓ † ÒÐ#ß !ÑÓ œ ÒÐ"ß !ÑÓß w

false in .™ )   Nevertheless, it is possible to prove a cancellation theorem for multiplication.

Theorem I10  (Cancellation Rule for Multiplication in )™   Suppose ?ß @ß B − Þ™
If  and , then .B? œ B@ B Á ! ? œ @

Proof   We know from Theorem I2 that either  or  for some , andB œ ÒÐ5ß !ÑÓ B œ ÒÐ!ß 5ÑÓ 5 − =
that since    (5 Á ! Ð B Á ÑÞ! Note:  we  start out saying: “suppose ”.  Picking acould B œ ÒÐ+ß ,ÑÓ
representative pair for the equivalence class  that has a  coordinate is not  to do thisB ! necessary
proof, but it makes the algebra simpler.  The trade-off is that we have to consider two cases. )

Suppose  and ? œ ÒÐ-ß .ÑÓ @ œ ÒÐ/ß 0ÑÓ

 : , where   Then becomesCase 1 B œ ÒÐ5ß !ÑÓ ! Á 5 − Þ B? œ B@=
  
     soÒ Ð5ß !ÑÓ † Ò Ð-ß .ÑÓ œ Ò Ð5ß !ÑÓ † Ò Ð/ß 0ÑÓ

       soÒ Ð5-  !.ß !-  5.ÑÓ œ Ò Ð5/  !0ß !/  50ÑÓ

       soÒ Ð5-ß 5.ÑÓ œ Ò Ð5/ß 50ÑÓ

           soÐ5-ß 5.Ñ ¶ Ð5/ß 50Ñ

       so5-  50 œ 5.  5/



       Since we can use the cancellation law for5Ð-  0Ñ œ 5Ð.  /Ñ 5 Á !ß
      multiplication already proved  to getin =

  .       Therefore-  0 œ .  /

                      soÐ-ß .Ñ ¶ Ð/ß 0Ñ

       soÒÐ-ß .ÑÓ œ ÒÐ/ß 0ÑÓ

  ? œ @

 :  , where .  Then  becomesCase 2 B œ ÒÐ!ß 5ÑÓ ! Á 5 − B? œ B@=

     soÒÐ!ß 5ÑÓ † ÒÐ-ß .ÑÓ œ ÒÐ!ß 5ÑÓ † ÒÐ/ß 0ÑÓ

       soÒÐ!-  5.ß 5-  !.ÑÓ œ ÒÐ!/  50ß 5/  !0ÑÓ

         soÒÐ5.ß 5-ÑÓ œ ÒÐ50ß 5/ÑÓ

          soÐ5.ß 5-Ñ ¶ Ð50ß 5/Ñ

       so5.  5/ œ 5-  50

       Since we can use the cancellation law for5Ð.  /Ñ œ 5Ð-  0Ñ 5 Á !ß
     multiplication already proved  to getin =

      that is,.  / œ -  0

                      soÐ-ß .Ñ ¶ Ð/ß 0Ñ

       that is,    ÒÐ-ß .ÑÓ œ ÒÐ/ß 0ÑÓ

    ? œ @ ñ

As we begin to prove theorems in this system , we might need to go all the way back to the basic™
definitions about  to do a proof that an integer is an equivalence class etc.™ À ÒÐ+ß ,ÑÓß
But as more theorems about  are proved,  they can be used to make later proofs more™
efficient as, for example, in proving the following corollary to Theorem I10.

Corollary I11  If  and , then  or ?ß @ − ? † @ œ ? œ @ œ Þ™ ! ! !

Proof    We are given that .  By Theorem I7,  so? † @ œ ? † œ! ! !
? † @ œ ? † Þ ? Á ! @ œ ñ! !If , then  by cancellation (Theorem I10).    

As we noted following Theorem I2, we can list  the integers (equivalence classes) as follows:all

   ... ,    .ÒÐ!ß $ÑÓß ÒÐ!ß #ÑÓß ÒÐ!ß "ÑÓß ÒÐ!ß !ÑÓß ÒÐ"ß !ÑÓß ÒÐ#ß !ÑÓß ÒÐ$ß !ÑÓß ÞÞÞ



Since  , we see that  is the additive inverse forÒÐ!ß 5ÑÓ  ÒÐ5ß !ÓÓ œ ÒÐ5ß 5ÑÓ œ ÒÐ!ß !ÑÓ ÒÐ!ß 5ÑÓ
ÒÐ5ß !ÑÓÞ ÒÐ!ß 5ÑÓ œ  ÒÐ5ß !ÑÓ ÞSo we write 

Let's give the name to the integer  Then 5 5ÒÐ5ß !ÑÓÞ  œ  ÒÐ5ß !ÑÓ œ ÒÐ!ß 5ÑÓÞ
ÐWe already assigned the names and the integers  and  earlier.! " >9 ÒÐ!ß !ÑÓ ÒÐ"ß !ÑÓ )

Then a list of all the different integers is:

  ÞÞÞß  ß  ß  ß ß ß ß ß ÞÞÞ$ # " ! " # $

Here we are using an “underline”  as a name for the integer  to distinguish between the5 ÒÐ5ß !ÑÓ
integer not and the whole number :  they are  officially the same.  For example:5 5

   The whole number was defined to be the set # Ögß Ög××Þ

   What set is the integer ?#

  is the set (equivalence class)  2 œ ÒÐ#ß !ÑÓ œ Ö Ð#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ×

 Each member of this equivalence class is an ordered pair, and an ordered
 pair is officially defined as a set:  So  ordered pair inÐ+ß ,Ñ œ ÖÖ+×ß Ö+ß ,××Þ each
   is itself a set.Ö Ð#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ×

  For example,  Ð#ß !Ñ œ ÖÖ#×ß Ö#ß !××

   But  and  are whole numbers, and each whole number is a set:# !

     and  ! œ g # œ Ögß Ög××Þ

  Therefore  ,Ð#ß !Ñ œ ÖÖ#×ß Ö#ß !×× œ Ö ÖÖgß Ög××× ß ÖÖgß Ög××ß g××
 so   

 # œ ÒÐ#ß !ÑÓ œ ÖÐ#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ×

         œ Ö ß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ× œ ÞÞÞÖ ÖÖgß Ög××× ß ÖÖgß Ög××ß g××
    Å Å Å

   the pair  is ; and each of the otherÐ#ß !Ñ underlined
   ordered pairs can be similarly “unpacked” and written as a set.
 
 Answering the question  “What is ?”  (from the first lecture) seems to get#
 more and more complicated.

Some Arithmetic in ™

We can do additions and multiplications in  by applying the definitions to the equivalence™
classes.   Sometimes we can save time by using theorems like Theorem I8.



 & # ( œ ÒÐ&ß !ÑÓ  ÒÐ#ß !ÑÓ œ ÒÐ&  #ß !ÑÓ œ ÒÐ(ß !ÑÓ œ
     Å
    &  # œ ( is an addition     performed in =
    where facts about addition of whole numbers 
    have already been worked out.

 & # & # $ œ  Ð  Ñ œ ÒÐ&ß !ÑÓ  ÒÐ!ß #ÑÓ œ ÒÐ&ß #ÑÓ œ ÒÐ$ß !ÑÓ œ

 2 2 œ  Ð  Ñ œ ÒÐ#ß !ÑÓ  ÒÐ!ß &ÑÓ œ ÒÐ#ß &ÑÓ œ ÒÐ!ß $ÑÓ œ & & $

  Ð  ÑÑ œ   Ð  Ð  ÑÑ œ   œ ÒÐ!ß #ÑÓ  ÒÐ$ß !Ó œ ÒÐ$ß #ÑÓ# $ # $ # $
       Å œ ÒÐ"ß !ÑÓ œ "
    Theorem I8 ii):  Ð  BÑ œ B

   we can either “work it out” like the examples above or, more  & & & & ! œ  Ð  Ñ œ À
simply, use the fact that was defined as the additive inverse of & &Þ

For  multiplication:

 & # "!† œ ÒÐ&ß !ÑÓ † ÒÐ#ß !ÑÓ œ ÒÐ& † #  ! † !ß ! † #  & † !ÑÓ œ ÒÐ"!ß !ÑÓ œ
        Å
    10, etc., are multiplications    & # œ†  performed in =
    where facts about multiplication of whole numbers 
    have already been worked out.

 Ð  Ñ& † Ð  Ñ œ ÒÐ!ß &ÑÓ † ÒÐ!ß #ÑÓ œ ÒÐ! † !  & † #ß & † !  ! † #ÑÓ œ ÒÐ"!ß !ÑÓ œ# "!
 

 or, easier, using Theorem I8 v)    Ð ß Ð  Ñ& † Ð  Ñ œ † œ Ñ# & # "!  

 & # "!† Ð  Ñ œ ÒÐ&ß !ÑÓ † ÒÐ!ß #ÑÓ œ ÒÐ& † !  ! † #ß ! † !  & † #ÑÓ œ ÒÐ!ß "!ÑÓ œ 

  or, easier, using Theorem I8 iv)Ð ß  Ð& # # "!† Ð  Ñ œ † Ñ œ &

 using Theorem I2 iii  or, you could work it out directlyÐ  Ñ& † œ # "! (
          in terms of the equivalence classes)

 &# œ ÒÐ&ß !ÑÓ † ÒÐ&ß !ÑÓ œ ÒÐ& ß !ÑÓ œ ÒÐ ß !ÑÓ œ# 25 #&
 

We can also define “positive,” “negative” and a relation called  in  Þ™

Here are the main ideas. We will explore a few of these facts about inequalities in  in the™
homework.



Definition I13  Let D − Þ™

   i)   is called    if   where and D D œ ÒÐ5ß !ÑÓ 5 − 5 Á !positive =
   ii)   is called  if   where and D D œ ÒÐ!ß 5ÑÓ 5 − 5 Á !negative =

T œ ÖÒÐ"ß !ÑÓß ÒÐ#ß !ÑÓß ÒÐ$ß !ÑÓß ÞÞÞ × œ Ö ß ß ß ÞÞÞ ×the set of positive integers is " # $
R œ ÖÒÐ!ß "ÑÓß ÒÐ!ß #ÑÓß ÒÐ!ß $ÑÓß ÞÞÞ × œ Ö  ß  ß  ß ÞÞÞ ×the set of negative integers is " # $

The sets , , and are pairwise disjoint and   T R Ö × œ R ∪ Ö × ∪ T0  !

Definition I14  For integers  we write  (  iff   is positive.Dß A D  A Ñ D  Aor equivalently, A  D

Notice that, according to Definition I14,      .D  œ D D ! !is positive means the same thing as

Using these definitions and the rules of algebra we developed in , we can prove the standard™
facts about inequalities.

Just for example:

Theorem I1   & Suppose   If  and then Dß A − D − D Á ß D  Þ™ ™ ! !#

   i)  if , then if , then D   D  à D   D  Þ! ! ! !
   ii) if and , then    D  A  D † A ! ! !
   iii)  if and , then    D  A  D † A ! ! !
   iv) if and , then D  A  D † A ! ! !

Proof    i) If then  for some   Then , which is one of theD  ß D œ Ò Ð5ß !ÑÓ 5 − Þ  D œ Ò Ð!ß 5ÑÓ! =
negative integers.  The proof of the other part is similar since  ÒÐ!ß 5ÑÓ œ ÒÐ5ß !ÑÓÞ

 ii)  If  and  are both positive, then  and  for some D A D œ Ò Ð5ß !ÑÓ A œ Ò Ð7ß !ÑÓ 5ß7 − Þ=
Then   which is one of theD † A œ Ò Ð5ß !ÑÓ † Ò Ð7ß !ÑÓ œ Ò Ð57  ! † !ß ! † 7  5 † !ÑÓ œ Ò Ð57ß !ÑÓ
positive integers.

 iii) If  and  are both negative, then  and  for some wholeD A D œ Ò Ð!ß 5ÑÓ A œ Ò Ð!ß7ÑÓ
numbers  and .  Then    5 7 D † A œ Ò Ð!ß 5ÑÓ † Ò Ð!ß7ÑÓ œ Ò Ð! † !  5 † 7ß 5 † !  ! † 7ÑÓ
œ Ò Ð57ß !ÑÓ which is one of the positive integers.

 iv) Homework Exercise       ñ

Theorem I16  Suppose   ThenDß ?ß @ − Þ™

 i)  if  and , then ?  @ D  ! D?  D@

 ii)  if  and , then ?  @ D  ! D?  D@

Proof   Homework exercise.



Some Concluding Remarks

We could continue to prove additional theorems about the algebra of addition, multiplication and
inequalities in the formal system .  But what we have done here already should be enough to™
convince you that this formal system  “acts just like” the informal system of integers.  Therefore™
we can agree that it is reasonable to use  as the official definition of the set of™ = =œ Ð ‚ ÑÎ ¶
integers.

The point is  that, henceforth, you should think of integers as equivalence classes of pairs ofnot
whole numbers.  For day-to-day purposes, we will use the integers the way we always have.  The
point  that we have carefully constructed a collection  that we consider to contain the “official”is ™
integers:  the members of , such as  and  behave just like the informal integers and this™ # &ß 
system  is constructed entirely of sets.  We are gradually seeing that “everything in™
mathematics”  (whole numbers, integers, relations,...) can be formulated in terms of sets.

We should now make one last agreement about notation.

We have given precise, formal definitions for  (the whole number system) and for  (the system= ™
of integers:

     = À !ß "ß #ß $ß ÞÞÞ
      ™ À ß ß ß ß ß ß ß ÞÞÞ $  #  " ! " # $

We noticed, earlier, that

  # œ Ögß Ög××
and    ... , # Ö ÖÖgß Ög××× ß ÖÖgß Ög××ß g××œ ÒÐ#ß !ÑÓ œ Ö ß ×

Because of the way we constructed whole numbers and integers,  r  the whole numbe is not#
Ð #officially) the same as the integer   :

    # Á #

However, it's easy to check that the sets

 
  with successor operation “add ” and

with successor operation “add ” Ö ß ß ß ß ÞÞÞ ×
Ö!ß "ß #ß $ß ÞÞÞ × "
! " # $ "

are both Peano systems, and “all Peano systems look the same.”  In other words,

   and  Ö ß ß ß ß ÞÞÞ× Ö ß ß ß ß ÞÞÞ×! " # $ ! " # $

 , so we can think of   as simply being abehave in exactly the same way Ö ß ß ß ß ÞÞÞ×! " # $
“photocopy”  of    inside Ö !ß "ß #ß $ÞÞÞ × À™

   Ö !ß "ß #ß $ß ÞÞÞ×
     Æ Æ Æ Æ

  ÖÞÞÞ ß ß ß ß ß ß ß ÞÞÞ× $  #  " ! " # $ß



Therefore for ordinary mathematical purposes  (that is, for work not concerned directly with the
foundations of the number systems) we can treat the original   and the copyÖ !ß "ß #ß $ÞÞÞ ×
Ö ß ß ß ß ÞÞÞ×! " # $  as being identical.  If for convenience we make that mental identification, then
we can think of   as a subset of  = ™

In fact, to help us ignore the difference,  we now throw away the notational crutch:  for an integer
5ß 5Þ we drop the underlining and just write   This means that the notation no longer tells you
whether “ ” means “the whole number ” or “the integer .”  But, unless we consciously dealing# # #
with questions about the foundations of mathematics, .the difference between them doesn't matter
Behavior is what counts!

The algebraic system  works well for some purposes, but it still has serious mathematical™
deficiencies:  for example, a very simple equation like  has no solution in .  We will#B œ " ™
briefly address that issue later by enlarging the number system again and giving a careful, formal
construction of the set of rational numbers, .  It will turn out that each rational number is an
equivalence class of pairs of integers.

For those who would like to think ahead and be inventive:

Think about the “informal” rational number  and ask how we could construct a"
#

formal definition for it  the integers we have already constructed.using

Perhaps we could think of  as being an ordered pair of integers:   Similarly,"
# Ð  "ß #ÑÞ

maybe we could think of the ordered pair  as the formal definition for  Ð  #ß %Ñ Þ#
%

But for the informal system of rationals,  .  So we would want# "
% #œ

   and      and     and    and ...Ð  "ß #Ñ Ð  #ß %Ñ Ð  $ß 'Ñ Ð%ß  )Ñ

all to represent the same rational number.  This suggests that the rational “one-half”
should be an equivalence class like

 Ö ÞÞÞß Ð  "ß #Ñß Ð  #ß %Ñß Ð  $ß 'Ñß Ð%ß  )Ñß ÞÞÞ ×

The official definition of   actually is:  ,  where  ™œ ÖÐDß AÑ À Dß A − ß A Á !× Î ¶
¶  is some equivalence relation.

Then the “official”  is the set of all equivalences classes.  How would you define the
relation  ?¶


