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We have a good informal picture about how the system of whole numbers works.  By the
whole number  we mean to   itssystem the set together with= œ Ö!ß "ß #ß ÞÞÞ ×,  rules for
arithmetic and for handling inequalities (for example, if  and , then+ß ,ß - − +  ,=
+  -  ,  -ÑÞ   Informally, we know a multitude of facts about behavior involving
whole numbers. ,  and . We also know how induction works. ß † œ ß  ß Ÿ

Ultimately, we want to show how the whole number system can be described in terms of
our foundation, set theory.  We want to construct a system consisting of sets, ways to
combine them  and ways to compare them so that the system “acts justÐ  ß † Ñ Ð  ß Ÿ Ñ
like” the whole number system.  As we have said several times, mathematicians don't
care about what the whole numbers “really are.”  If we can use set theory to build a
system that “acts just like ”, then all mathematicians can agree to treat that system as .= =

More carefully, what do we need to do?  When have we got a system “that acts just like
=”?   There are so many facts we know about the whole number system that we should
build into this system of sets.   There may even be about facts about  that we don't know=
but that ought to be included.  Our job seems like a hopeless task.

To make things more manageable, it would be very helpful if we had a short list of  “the
crucial properties” of a list  we can prove that the other important= from which
properties of  must also inevitably be true. Then, if we can build a system of sets which=
has all “the crucial properties” of ,  then our new system will include the other=
important properties of   automatically.=

Fortunately, there is just such a short list  axioms developed by the mathematician
Giuseppe Peano in 1889.  The latter part of the 19  century, and the beginning of the20 ,th th

were an “age of rigor” for mathematics a period when firm foundations formathematics
were being established.  By then, for example, calculus had been around for a couple of
centuries and seemed to work well at least in skilled and sensitive hands but it was 
clear that there was a lot of vagueness about why it all worked.  Part of the problem had
to do with not having firm foundations for the number systems (particularly ).‘

We are going to look at the list of  “Peano's Axioms” and try to indicate how all the
informal properties of the whole number system  follow from the properties in the list.=
There are many, many details to check. We will check some of the details to indicate how
(with several additional lectures) all the details could be ironed out.  In not doing
everything,  there is no attempt to “hide” something hard.  Any material we leave out is
truly just “more of the same.”



Definition  A   is a collection of objects with the following properties:Peano system c

 P1)  There is a special object in  named “ .”c !
 ÐAlthough the name “ ”  is intended to  “the whole number zero,” we! suggest
 really know  about how the object called “ ” in a Peano system actsnothing !
 except for what is stated in (or deducible from) the remaining axioms.

 P2)  For each object , there is exactly one object in  called the B − c c successor
   (for short, we write  to represent the successor of .of B B BÑ

 P3)   is not the successor of any object in  ! Àc

    ÐaB − Ñ B Á !c 

 P4)  Different objects in  have different successorsc À

    ( )  aB − ÑÐaC − ÐB Á C Ê B Á C Ñc c  

 P5)  Suppose  If   and if   is true,E © Þ ! − E ÐaB − Ñ ÐB − E Ê B − EÑc c 

 then .E œ c

Note:  In his 1889 book, Peano went so far as to also include a few other axioms about
how “ ” behaves:  for example,œ

     andÐaB − Ñ B œ Bc
   ÐaB − ÑÐaC − Ñ ÐÐB œ CÑ Ê C œ BÑÑc c

Our point of view is that “ ”  is a logical term meaning “is the same thing as” andœ
that such assumptions about “ ” do not really need to be spelled out although doingœ 
so would certainly be harmless.

A Peano system is an “abstract system” :  we are given no information whatsoever about
what the “objects” in  “really are,” and we have no information about how  can bec B

found for a given .  B − c The only things we know about the objects in  and theirc
successors is what the axioms P1-P5 say about their behavior.  Of course, we can
logically deduce (prove) new pieces of information about  (theorems) from thosec
axioms.

Until a reasonable collection of theorems about a Peano system is built up to use, the
proofs of theorems will usually rely on axiom P5 which we will refer to as the
induction axiom.

The challenge (and the amusement) of proving things about a Peano system is that we
have so little, at the beginning, to work with. We have to fight for each little new fact.
But the more things we prove, the more tools we have to work with and the easier it gets.



Notice that the informal whole number system, , obeys each of the axioms P1-P5=
provided that
  i)  the objects  in   to be whole numbers, andwe interpret B c
  ii)  “successor”   to mean the whole number “ .”we interpret B B  "

Under this interpretation,  is an example of a Peano system.  Of course, axiom P5  is=
what we called the Principle of Mathematical Induction (PMI) in .=

When we have an abstract system like  and wec

  i)  all the objects and operations in   (such as “successor”)interpret c
  as representing certain concrete objects and operations, and

  ii) all the assumptions about the objects/operations in the abstract system
  become true statements about the specific objects in the interpretation

then we say we have found a concrete  for the abstract system.  Thus, model  is a model=
for the abstract Peano system c.

Some Theorems About a Peano System c

To illustrate dealing with an abstract system, we will prove some simple theorems about
c that follow from P1-P5.   (Since the theorems follow logically from the axioms P1-P5,
and because P1-P5 (as  interpreted) are true statements in a model, each theorem must
also be true (as interpreted) in any model of  (for example, in ).  For example, see thec =
italicized interpretation of Theorem 1 in the model .= )

Theorem 1  For all ,  either  or    (that is, every nonzero B − B œ ! ÐbC − Ñ B œ C Bc c 

in  is a successor).  (c Interpreted in the model , Theorem 1 says that for each nonzero=
whole number , there is a whole number  such that B C B œ C  "Þ)

Proof  Let  or  or  is aE œ ÖB − À B œ ! ÐbC − Ñ B œ C × œ ÖB − À B œ ! Bc c c

successor  We need to show (using P5) that ×Þ E œ Þc

 i)  By definition of ,  E ! − E
 ii) Suppose .  Then  because   a successor (namely, theB − E B − E B  is
successor
 of ).B
   
By the induction axiom P5, we conclude that E œ Þ ñc

A  is a theorem that follows as a relatively quick and easy consequence of acorollary
previous theorem.



Corollary 2  If  and , then !   B − B Á ! Ðb C − Ñ B œ C Þc c 

Proof   Theorem 1 gives that if , then   B Á ! Ðb C − Ñ B œ Cc 

            To show uniqueness, notice that if   ,  then , soB œ C B œ D C œ D C œ D   and
(using the contrapositive of P4).    ñ

Definition   If  in , we call  .B œ C C c the predecessor of B

Notice that the definition makes sense: we can say  predecessor because (fromthe
Corollary 2) there can't be more than one predecessor for .  Corollary 2 therefore saysB
that each nonzero element  in  has a unique predecessor.B c

Theorem 3  For all ,   ( ).B − B Á Bc  that is, no object  in  is its own successorB c

Proof   Homework Exercise

Theorem 4  If , then either or can be obtained from  by applying theB − B œ ! B !c
successor operation to  a finite number of times.!

Proof   Let  or can be obtained from  by applying the successorE œ ÖB − À B œ ! B !c
operation to  a finite number of times! ×Þ

    (by definition of )! − E E

 Suppose .  We prove that B − E B − EÞ

  If ,  then  because  can be obtained by applying theB œ ! B − E B œ !  

  successor operation just  time.one

  If , then (because  can be obtained from  by a finiteB Á ! B − EÑ B !
  number of successor operations.  But then one additional application of
  the successor operation produces .   Therefore B B − EÞ 

By the Induction Axiom P5),  A , which proves the theorem.  œ ñc

Corollary 5  If  and , then one of  or  can be obtained from the other byBß C − B Á C B Cc
applying the successor operation a finite number of times.



Proof  If one of  or  is  (say,  then Theorem 4 says we can obtain  by applyingB C ! B œ !Ñ C
the successor operation to a finite number of times.B

           If neither  nor  is , then (by Theorem 4 ) we can obtain both  and by from B C ! B C !
using the successor operation.  Applying the successor operation to , we arrive first at!
(say) ;  and then continuing to apply the successor operation an additional number ofB
times produces .    C ñ

NOTE:   Theorem 4 and Corollary 5 are italicized because we will not use them in any
proofs  that come later.  In fact a “purist” might object that if we are trying to formally
develop a theory of Peano systems  the system of whole numbers , thenin order to define =
we should not be allowed to use an argument that involves doing something “a finite
number of times” objecting that we can't formally say what “a finite number of times”
means until after  we have defined the whole number system.
              Nevertheless, it seemed like it would be helpful to include the italicized results to
help build up our intuitive picture of what a Peano system  “looks like” as discussedc 
in the next section.
 See Theorem 13.
 



All Peano systems are “the same”

What does a Peano system “look like” ?   We can get an idea with a schematic diagram in
which an arrow “ ” points to “the successor.”   We start with , which has noÄ !
predecessor:

  ! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   

Theorem 4 tells us that every nonzero object  appears in this diagram eventually,B − c
after applying the successor a sufficient number of times.

When we make the diagram,  it will always “keep on going forward” that is, there will
never be any “backward loops”  like

 
Which axiom says that the first loop is impossible?  the second?  Why is the third loop
impossible ?

Thus we can informally picture a Peano system  as an “infinite linear chain” starting atc
its special element, :!

    (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   



All Peano systems must look the same. The technical phrase for this is that all Peano
Systems are isomorphic.  a little more precise, this means that if we have two To be 
Peano systems  and (we use  for the second Peano system and its objects),c c  boldface
then it is possible

 i) to pair off all the elements of  with all the elements of in such a way that soc c  
 that each object in one system has a unique “partner” in the other system.

 ii) to do this not just with some “random” pairing, but to do it in such a way that !
is paired with and the pairing respects the successor operation:   if  is partnered! B − c
with , then  (in ) is partnered with in )  in other words, “theB B Ð− B Ñ Àc c c 

successor of partner is the partner of the successor.”

Our images of these systems would then look like this where vertical arrows indicate
the “pairing”:

         (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   

Î Î Î Î Î    
   (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ         

A slightly different way to think of this isomorphic “pairing” is just to imagine that each
object  in has been “renamed” subject to the following rules:B c

  i)   is renamed as ! !
  ii) if  is renamed as , then is renamed as B BB B 

From this point of view, the “second” Peano System  is just the “same old stuff” butc
with new names.

This is an example of an important phenomenon.  Sometimes different systems really are
complete look-alikes: one is just the other with elements “renamed” in a way that
respects the operations inside the system (e.g.,  “successor”).  The systems are perfect
“mirror images” of each other .  The words they have exactly the same structure
“structure” and “system” are a little vague, so we can't make a precise mathematical
definition here.  But here is an informal definition that may be useful to remember.

Informal Definition    Suppose there is a “pairing (or renaming) rule”  between two
systems which pairs off all the objects in the two systems with each other in a one-for-
one way.  Suppose, moreover, that this pairing is done in a way that respects all the
operations (like “successor”, for example) in the systems.  Then we say that the two
structures are  and the “pairing rule” is called an isomorphic isomorphism between the
structures.



Note:  “isomorphism”  comes from two Greek words,

  “isos”   meaning “equal” or “same”
  “morphe”  meaning  “shape” or “form” or “structure” )

To make the definition more precise, we would replace “pairing rule”  with “a one-to-
one, onto function” between the systems.  But that additional precision needs to wait
until we say more about functions, one-to-one functions, onto functions, etc.

Students who have already taken Math 309 (Matrix Algebra) should have seen the idea of
“isomorphic systems” before although the word “isomorphic” might not have been
used.  If is a finite dimensional vector space with basis , then  isZ œ Ö, ß ÞÞÞß , × ZU " 8

isomorphic to  (“looks just like”)  the vector space .  The “coordinate mapping” pairs‘8

off each vector  with a vector in namely,   where  areB − Z ß B Ð- ß ÞÞÞß - Ñ - ß ÞÞÞß -‘ Ð8
" 8 " 8

the coordinates of  with respect to the basis B U ÞÑ

This is sufficient detail for what we are going to do.  We have argued that any two Peano
systems are isomorphic, so that  “ .”if you've seen one Peano system, you've seen them all

However, those who are interested are encouraged to also read this optional
(indented) material.  Unlike the more informal discussion, above, the following
discussion makes no use of the “picture” and makes no use of the italicized results
Theorem 4  Corollary 5. and The “renaming” or “pairing” rule is defined
inductively without any reference to the figures above.

Define a “renaming” rule (function)  that pairs each element in  with aV c
“unique partner” in the other Peano system .  The definition of  is donec V
inductively (that is, using axiom P5):

  Let V !Ð!Ñ œ
  and,  aB − ÐB Ñ œ Ð B Ñ Ð‡Ñc V VÐ Ñ 

Ð‡Ñ ÐB Ñ ÐBÑ tells you how to find  (an object in )  if you already know   (anV V c
object in ) This defines  for every c Þ B − ÀV c

 For example, the rule gives  V !Ð!Ñ œ ß
     V VÐ ÑÑ œ !Ð! Ñ œ Ð ! ß  

     ,   etc.V V Ð! ÑÐÐ! Ñ Ñ œ Ð Ð! ÑÑ œ     

 More precisely, if we let  is defined ,  then  andE œ ÖB − À ÐBÑ × ! − Ec V
 if , then so, by P5), .B − E B − E  E œ c

There are two important observations to make:



1)   elements   get assigned to  partners inDifferent differentBß C − c
c  B Á C ÐBÑ Á ÐCÑthat is, if , then To see this, we use induction.V V .

 Let   .  We want toE œ ÖB − À aC Ð C Á B Ê ÐCÑ Á ÐBÑ Ñ×c V V
 see that E œ Þc

  :  To see this, we need to check that if , then! − E C Á !
  V V œ !ÐCÑ Á Ð!Ñ Þ   In other words, we have to check
  that a nonzero  in  gets a nonzero partner in .C c c

 Since ,  then (by Corollary 2)  forC Á ! C œ D

 some .  Therefore D − ÐCÑ œ Dc V VÐ Ñ

   That means that has aœ Ð ÐDÑÑ Þ ÐCÑV V  
 predecessor  in .  But  has no predecessorV !ÐDÑ   c
 in  (by P3), so c  .V !ÐCÑ Á

If , we must show that , that is:  we mustB − E B − E

show that if , then  .  We do this byC Á B ÐCÑ Á ÐB Ñ+ V V 

showing the contrapositive:  if  , thenV VÐCÑ œ ÐB Ñ

C œ B Þ

Suppose Since  (by P3),V VÐCÑ œ ÐB ÑÞ B Á !  
V VÐB Ñ Á Ð!Ñ ! − E C Á ! (since ) so .  Therefore
C C œ D Þ has a predecessor, say  

Then Ð ÐBÑÑ œ ÐB Ñ œ D ÐDÑV V VÐ Ñ œ ÐV Ñ   .
By P4), we conclude that SinceV VÐBÑ œ ÐDÑÞ  
B − E B œ DÞ, this means that   But then
C œ D œ B .

  Therefore, by P5), E œ Þ ñc

2)  .  Again, we use induction.Every object in  acquires a partner from c c
Let  for some We need to show thatE B B œ Vœ Ö − À ÐCÑ C − ×Þc c
E œ cÞ
 
  because ! E ! œ V− Ð!Ñ 

   .   Suppose Then  for some B E B œ V− ÐCÑ C − Þc
  Therefore . In other words, V ÐV Ñ B BÐC Ñ œ ÐCÑ œ     
  is partnered with  from , so C − Þ c B E

By P5),  .E œ c



Putting observations 1) and 2) together, the rule gives an exact pairing, one-V 
for-one ( is a “one-to-one, onto function”) between the all the objects in  andV c
all those in .  By the definition of , the pairing respects the successorc V
operation work in the two systems:
    VÐ Ñ œ VB ÐBÑ 

 “the partner of the successor” “the successor of the partner”œ

More about a Peano System

We want to convince ourselves that a Peano system captures the essence of our informal
system  .  Already, we have a “mental picture” and a few theorems which suggest that=
the objects in a Peano system are arranged just like the whole numbers.  We want to see
that we can define “addition,”  “multiplication,” and “ ” between objects in a Peano
system and that, when we're done, the result acts just like  .=

All Peano systems look alike, so let's begin by assigning some convenient  to thenames
objects in a Peano system.  After all, needing to write things like   becomes!

tedious.

There are .    For example, some possibilities couldlots of possible ways to name things
be:

! ! ! ! ! ! !

!
! " "! "" "!! "!" ""!

      ...  etc.
Naming System œ † ‡ ¿ ð € ß
Naming System I II III IV V VI ...
Naming System ...
Naming System ...! " # $ % & '

The point is that there are lots of ways to  for , ..etc.  It'sinvent names !ß ! ! ß Þ 

important, here, to remember that however we decide to invent names for the objects in
the Peano system,  the names themselves don't give us any new .  But,information
keeping that in mind, we might as well use names are convenient and that remind us of
how we  the system is going to work.  So we'll use the intuitively familiar symbolshope
!ß "ß #ß $ß ÞÞÞ as in the fourth row of the table.

Caution  For now, ... are now just “marks on paper”  the !ß "ß #  names
 we're giving objects in the Peano system.  There's no more reason to say “ plus" #
œ $ œ À” than there is to say “† plus ‡ ¿” both are just ways of saying  (in

different naming systems) that  “  plus ” and in fact, the! ! œ !   

statement  “  plus ”  because we haven't! ! œ !   has no meaning yet at all
defined plus what “ ” means in a Peano system.

We  say , because (right now) that statement is just a newcannot # † # œ %
way of writing  ! † ! œ !    which, at the moment, has no meaning at
all, because we haven't even defined what it means to “multiply”  objects in a



Peano System.

We can, however, use these new names now to record things that we  already know.do
For example, the axioms for a Peano system now read:

 P1)  There is one special object named “ ” in ! c
 P2)  For each object , there is exactly one object in  called its 8 − c c successor
        (and denoted 8 Ñ

 P3)   is not the successor of any object, that is, ! Ða8 − Ñ 8 Á !c 

 P4)  Different objects have different successors, that is
   ,  a7 a8 − Ð7 Á 8 Ê 7 Á 8 Ñc  

 P5) Suppose  If   and ifE © Þ ! − Ec
   Ða8 − Ñ Ð8 − E Ê 8 − EÑc 

 then .E œ c

Just because of how we named things, statements like these are true:

     (i.e.,  is the successor of ) ! œ " " ! ß

  ! œ " œ #ß 

  % œ &

If we had decided instead to use the naming system in the first row of the table, the
following would be true:

  œ † œ
  œ † ‡ œ œ
  ð € œ

The theorems we already proved, with the new naming system, can now be written:

Theorem 1  For all , either  or  for some 8 − 8 œ ! 8 œ 7 7 −c c

Corollary 2  If  and , then  for a  .8 − 8 Á ! 8 œ 7 7 −c c unique

Theorem 3  For all , 8 − 8 Á 8c 

Theorem 4  If , then or can be obtained from  by applying the8 − 8 œ ! 8 !c
successor operation finitely often.

Corollary 5  If  and , then one of  and  can be obtained from7ß8 − 7 Á 8 7 8c
the other by applying the successor operation finitely often.


