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We have a good informal picture about how the whole numbers work.  By the whole
number  we mean to   itssystem the set together with= œ Ö!ß "ß #ß ÞÞÞ ×,  rules for arithmetic
and for handling inequalities (for example, if  and , then +ß ,ß - − +  , +  -  ,  -ÑÞ=
Informally, we know a multitude of facts about behavior involving whole numbers.  ß
† œ ß  ß Ÿ,  and . We also know how induction works.

Ultimately, we want to show how the whole number system can be described in terms of
our foundation, set theory.  We want to construct a system consisting of sets, ways to
combine them  and ways to compare them so that the system “acts justÐ  ß † Ñ Ð  ß Ÿ Ñ
like” the whole number system.  As we have said several times, mathematicians don't
care about what the whole numbers “really are.”  If we can use set theory to build a
system that “acts just like ”, then all mathematicians can agree to call that system  .= =

More carefully, what do we need to do?  When have we got a system “that acts just like
=”?   There are so many facts we know about the whole number system that we should
build into this system of sets.   There may even be about facts about  that we don't know=
but that ought to be included.  Our job seems like a hopeless task.

To make things more manageable, it would be very helpful if we had a short list of  “the
crucial properties” of a list  we can prove that the other important= from which
properties of  must also inevitably be true. Then, if we can build a system of sets which=
has all “the crucial properties” of ,  then our new system will include the other=
important properties of   automatically.=

Fortunately, there is just such a short list  axioms developed by the mathematician
Giuseppe Peano in 1889.  The latter part of the 19  century, and the beginning of the20 ,th th

were an “age of rigor” for mathematics a period when firm foundations for
mathematics were being established.  This project was felt to be intellectually necessary.
For example, calculus had by then been around for a couple of centuries and seemed to
work well at least in skilled and sensitive hands.  But there was clearly a lot of
vagueness about why it worked.  A lack of firm foundations for the number systems
(partilcularly ) was part of the problem.‘

We are going to look at the list of  “Peano's Axioms” and try to indicate how all the
informal properties of the whole number system  follow from the properties in the list.=
There are many, many details to check. We will check some of the details to indicate how
(with several additional lectures) all the details could be ironed out.  In not doing
everything,  there is no attempt to “hide” something hard.  Any material we leave out is
truly just “more of the same.”



Definition  A   is a collection of objects with the following properties:Peano system c

 P1)  There is a special object in  named “ .”c !
 ÐAlthough the name “ ”  is intended to  “the whole number zero,” we! suggest
 really know  about how the object called “ ” in a Peano system actsnothing !
 except for what is stated in (or deducible from) the remaining axioms.

 P2)  For each object , there is exactly one object in  called the B − c c successor
   (for short, we write  to represent the successor of .of B B BÑ

 P3)   is not the successor of any object in  ! Àc

   ÐaB − Ñ B Á !c 

 P4)  Different objects in  have different successorsc À

   ( )  aB − ÑÐaC − ÐB Á C Ê B Á C Ñc c  

 P5)  Suppose  If   and if   is true,E © Þ ! − E ÐaB − Ñ ÐB − E Ê B − EÑc c 

 then .E œ c

Note:  In his 1889 book, Peano went so far as to also include a few other axioms about
how “ ” behaves:  for example,œ

      andÐaB − Ñ B œ Bc
    ÐaB − ÑÐaC − Ñ ÐÐB œ CÑ Ê ÐC œ BÑÑc c

Our point of view is that “ ”  is a logical term meaning “is the same thing as” andœ
that such assumptions about “ ” do not really need to be spelled out although doingœ 
so would certainly be harmless.

A Peano system is an “abstract system” :  we are given no information whatsoever about
what the “objects” in  “really are,” and we have no information about how  can bec B

found for a given .  B − c The only things we know about the objects in  and theirc
successors is what the axioms P1-P5 say about their behavior.  Of course, we can
logically deduce (prove) new pieces of information about  (theorems) from thosec
axioms.

Until a reasonable collection of theorems about a Peano system is built up to use, the
proofs of theorems will usually rely on axiom P5 which we will refer to as the
induction axiom in .c

The challenge (and the amusement) of proving things about a Peano system is that we
have so little, at the beginning, to work with. We have to fight for each little new fact.
But the more things we prove, the more tools we have to work with and the easier it gets.



Notice that the informal whole number system, , obeys each of the axioms P1-P5=
provided that
  i)   the objects  in   to be whole numbers, andwe interpret B c
  ii)  “successor”   to mean the whole number “ .”we interpret B B  "

Under this interpretation,  is an example of a Peano system.  Of course, axiom P5  is=
what we called the Principle of Mathematical Induction (PMI) in .=

When we have an abstract system like  and wec

  i)  all the objects and operations in   (such as “successor”)interpret c
  as representing certain concrete objects and operations, and

  ii) all the assumptions about the objects/operations in the abstract system
  become true statements about the specific objects in the interpretation

then we say we have found a concrete  for the abstract system.  Thus, model  is a model=
for the abstract Peano system c.

Some Theorems About a Peano System c

To illustrate dealing with an abstract system, we will prove some simple theorems about
c that follow from P1-P5.   (The theorems follow logically from the axioms P1-P5.
Because P1-P5 (as  interpreted in the model ),  each theorem must also be true when=
interpreted the same way as as statement about  .  For example, see the italicized=
interpretation of Theorem 1 in the model .= )

Theorem 1  For all ,  either  or    (that is, every nonzero B − B œ ! ÐbC − Ñ B œ C Bc c 

in  is a successor).  (c Interpreted in the model , Theorem 1 says that for each nonzero=
whole number , there is a whole number  such that B C B œ C  "Þ)

Proof  Let  or  or  is aE œ ÖB − À B œ ! ÐbC − Ñ B œ C × œ ÖB − À B œ ! Bc c c

successor  We need to show (using P5) that ×Þ E œ Þc

 i)  By definition of ,  E ! − E
 ii) Suppose .  Then  because   a successor (namely, theB − E B − E B  is
successor of ).B
   
By the induction axiom P5, we conclude that E œ Þ ñc



A  is a theorem that follows as a relatively quick and easy consequence of acorollary
previous theorem.

Corollary 2  If  and , then !   B − B Á ! Ðb C − Ñ B œ C Þc c 

Proof   Theorem 1 gives that if , then   B Á ! Ðb C − Ñ B œ Cc 

            To show uniqueness, notice that if   ,  then , soB œ C B œ D C œ D C œ D   and
(using the contrapositive of P4).    ñ

Definition   If  in , we call  .B œ C C c the predecessor of B

Notice that the definition makes sense: we can say  predecessor because (fromthe
Corollary 2) there can't be more than one predecessor for .  Corollary 2 therefore saysB
that each nonzero element  in  has a unique predecessor.B c

Theorem 3  For all ,   ( ).B − B Á Bc  that is, no object  in  is its own successorB c

Proof   Homework exercise

Theorem 4  If , then either or can be obtained from  by applying theB − B œ ! B !c
successor operation to  a finite number of times.!

Proof   Let  or can be obtained from  by applying the successorE œ ÖB − À B œ ! B !c
operation to  a finite number of times! ×Þ

    (by definition of )! − E E

 Suppose .  We prove that B − E B − EÞ

  If ,  then  because  can be obtained by applying theB œ ! B − E B œ !  

  successor operation just  time.one

  If , then (because  can be obtained from  by a finiteB Á ! B − EÑ B !
  number of successor operations.  But then one additional application of
  the successor operation produces .   Therefore B B − EÞ 

By the Induction Axiom P5),  A , which proves the theorem.  œ ñc



Corollary 5  If  and , then one of  or  can be obtained from the other byBß C − B Á C B Cc
applying the successor operation a finite number of times.

Proof  If one of  or  is  (say,  then Theorem 4 says we can obtain  by applyingB C ! B œ !Ñ C
the successor operation to a finite number of times.B

           If neither  nor  is , then (by Theorem 4 ) we can obtain both  and by from B C ! B C !
using the successor operation.  Applying the successor operation to , we arrive first at!
(say) ;  and then continuing to apply the successor operation an additional number ofB
times produces .    C ñ

NOTE:   Theorem 4 and Corollary 5 are italicized because we will not use them in any
proofs  that come later.  In fact a “purist” might object that if we are trying to formally
develop a theory of Peano systems  the system of whole numbers , thenin order to define =
we should not be allowed to use an argument that involves doing something “a finite
number of times” objecting that we can't formally say what “a finite number of times”
means until after  we have defined the whole number system.
              Nevertheless, it seemed like it would be helpful to include the italicized results to
help build up our intuitive picture of what a Peano system  “looks like” as discussedc 
in the next section.
 See Theorem 13.
 



All Peano systems are “the same”

What does a Peano system “look like” ?   We can get an idea with a schematic diagram in
which an arrow “ ” points to “the successor.”   We start with , which has noÄ !
predecessor:

  ! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   

Theorem 4 tells us that every nonzero object  appears in this diagram eventually,B − c
after applying the successor a sufficient number of times.

When we make the diagram,  it will always “keep on going forward” that is, there will
never be any “backward loops”  like

 
Which axiom says that the first loop is impossible?  the second?  Why is the third loop
impossible ?

Thus we can informally picture a Peano system  as an “infinite linear chain” starting atc
its special element, :!

    (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   



All Peano systems must look the same. The technical phrase for this is that all Peano
Systems are isomorphic.  a little more precise, this means that if we have two To be 
Peano systems  and (we use  for the second Peano system and its objects),c c  boldface
then it is possible

 i) to pair off all the elements of  with all the elements of in such a way that soc c  
 that each object in one system has a unique “partner” in the other system.

 ii) to do this not just with some “random” pairing, but to do it in such a way that !
is paired with and the pairing respects the successor operation:   if  is partnered! B − c
with , then  (in ) is partnered with in )  in other words, “theB B Ð− B Ñ Àc c c 

successor of partner is the partner of the successor.”

Our images of these systems would then look like this where vertical arrows indicate
the “pairing”:

         (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   

Î Î Î Î Î    
   (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ         

A slightly different way to think of this isomorphic “pairing” is just to imagine that each
object  in has been “renamed” subject to the following rules:B c

  i)   is renamed as ! !
  ii) if  is renamed as , then is renamed as B BB B 

From this point of view, the “second” Peano System  is just the “same old stuff” butc
with new names.

This is an example of an important phenomenon.  Sometimes different systems really are
complete look-alikes: one is just the other with elements “renamed” in a way that
respects the operations inside the system (e.g.,  “successor”).  The systems are perfect
“mirror images” of each other .  The words they have exactly the same structure
“structure” and “system” are a little vague, so we can't make a precise mathematical
definition here.  But here is an informal definition that may be useful to remember.

Informal Definition    Suppose there is a “pairing (or renaming) rule”  between two
systems which pairs off all the objects in the two systems with each other in a one-for-
one way.  Suppose, moreover, that this pairing is done in a way that respects all the
operations (like “successor”, for example) in the systems.  Then we say that the two
structures are  and the “pairing rule” is called an isomorphic isomorphism between the
structures.



Note:  “isomorphism”  comes from two Greek words,

  “isos”   meaning “equal” or “same”
  “morphe”  meaning  “shape” or “form” or “structure” )

To make the definition more precise, we would replace “pairing rule”  with “a one-to-
one, onto function” between the systems.  But that additional precision needs to wait
until we say more about functions, one-to-one functions, onto functions, etc.

Students who have already taken Math 309 (Matrix Algebra) should have seen the idea of
“isomorphic systems” before although the word “isomorphic” might not have been
used.  If is a finite dimensional vector space with basis , then  isZ œ Ö, ß ÞÞÞß , × ZU " 8

isomorphic to  (“looks just like”)  the vector space .  The “coordinate mapping” pairs‘8

off each vector  with a vector in namely,   where  areB − Z ß B Ð- ß ÞÞÞß - Ñ - ß ÞÞÞß -‘ Ð8
" 8 " 8

the coordinates of  with respect to the basis B U ÞÑ

This is sufficient detail for what we are going to do.  We have argued that any two Peano
systems are isomorphic, so that  “ .”if you've seen one Peano system, you've seen them all

However, those who are interested are encouraged to also read this optional
(indented) material.  Unlike the more informal discussion, above, the following
discussion makes no use of the “picture” and makes no use of the italicized results
Theorem 4  Corollary 5. and The “renaming” or “pairing” rule is defined
inductively without any reference to the figures above.

Define a “renaming” rule (function)  that pairs each element in  with aV c
“unique partner” in the other Peano system .  The definition of  is donec V
inductively (that is, using axiom P5):

  Let V !Ð!Ñ œ
  and,  aB − ÐB Ñ œ Ð B Ñ Ð‡Ñc V VÐ Ñ 

Ð‡Ñ ÐB Ñ ÐBÑ tells you how to find  (an object in )  if you already know   (anV V c
object in ) This defines  for every c Þ B − ÀV c

 For example, the rule gives  V !Ð!Ñ œ ß
     V VÐ ÑÑ œ !Ð! Ñ œ Ð ! ß  

     ,   etc.V V Ð! ÑÐÐ! Ñ Ñ œ Ð Ð! ÑÑ œ     

 More precisely, if we let  is defined ,  then  andE œ ÖB − À ÐBÑ × ! − Ec V
 if , then so, by P5), .B − E B − E  E œ c

There are two important observations to make:



1)   elements   get assigned to  partners inDifferent differentBß C − c
c  B Á C ÐBÑ Á ÐCÑthat is, if , then To see this, we use induction.V V .

 Let   .  We want toE œ ÖB − À aC Ð C Á B Ê ÐCÑ Á ÐBÑ Ñ×c V V
 see that E œ Þc

  :  To see this, we need to check that if , then! − E C Á !
  V V œ !ÐCÑ Á Ð!Ñ Þ   In other words, we have to check
  that a nonzero  in  gets a nonzero partner in .C c c

 Since ,  then (by Corollary 2)  forC Á ! C œ D

 some .  Therefore D − ÐCÑ œ Dc V VÐ Ñ

   That means that has aœ Ð ÐDÑÑ Þ ÐCÑV V  
 predecessor  in .  But  has no predecessorV !ÐDÑ   c
 in  (by P3), so c  .V !ÐCÑ Á

If , we must show that , that is:  we mustB − E B − E

show that if , then  .  We do this byC Á B ÐCÑ Á ÐB Ñ+ V V 

showing the contrapositive:  if  , thenV VÐCÑ œ ÐB Ñ

C œ B Þ

Suppose Since  (by P3),V VÐCÑ œ ÐB ÑÞ B Á !  
V VÐB Ñ Á Ð!Ñ ! − E C Á ! (since ) so .  Therefore
C C œ D Þ has a predecessor, say  

Then Ð ÐBÑÑ œ ÐB Ñ œ D ÐDÑV V VÐ Ñ œ ÐV Ñ   .
By P4), we conclude that SinceV VÐBÑ œ ÐDÑÞ  
B − E B œ DÞ, this means that   But then
C œ D œ B .

  Therefore, by P5), E œ Þ ñc

2)  .  Again, we use induction.Every object in  acquires a partner from c c
Let  for some We need to show thatE B B œ Vœ Ö − À ÐCÑ C − ×Þc c
E œ cÞ
 
  because ! E ! œ V− Ð!Ñ 

   .   Suppose Then  for some B E B œ V− ÐCÑ C − Þc
  Therefore . In other words, V ÐV Ñ B BÐC Ñ œ ÐCÑ œ     
  is partnered with  from , so C − Þ c B E

By P5),  .E œ c



Putting observations 1) and 2) together, the rule gives an exact pairing, one-V 
for-one ( is a “one-to-one, onto function”) between the all the objects in  andV c
all those in .  By the definition of , the pairing respects the successorc V
operation work in the two systems:
    VÐ Ñ œ VB ÐBÑ 

 “the partner of the successor” “the successor of the partner”œ

More about a Peano System

We want to convince ourselves that a Peano system captures the essence of our informal
system  .  Already, we have a “mental picture” and a few theorems which suggest that=
the objects in a Peano system are arranged just like the whole numbers.  We want to see
that we can define “addition,”  “multiplication,” and “ ” between objects in a Peano
system and that, when we're done, the result acts just like  .=

All Peano systems look alike, so let's begin by assigning some convenient  to thenames
objects in a Peano system.  After all, needing to write things like   becomes!

tedious.

There are .    For example, some possibilities couldlots of possible ways to name things
be:

! ! ! ! ! ! !

!
! " "! "" "!! "!" ""!

      ...  etc.
Naming System œ † ‡ ¿ ð € ß
Naming System I II III IV V VI ...
Naming System ...
Naming System ...! " # $ % & '

The point is that there are lots of ways to  for , ..etc.  It'sinvent names !ß ! ! ß Þ 

important, here, to remember that however we decide to invent names for the objects in
the Peano system,  the names themselves don't give us any new .  But,information
keeping that in mind, we might as well use names are convenient and that remind us of
how we  the system is going to work.  So we'll use the intuitively familiar symbolshope
!ß "ß #ß $ß ÞÞÞ as in the fourth row of the table.

Caution  For now, ... are now just “marks on paper”  the !ß "ß #  names
 we're giving objects in the Peano system.  There's no more reason to say “ plus" #
œ $ œ À” than there is to say “† plus ‡ ¿” both are just ways of saying  (in

different naming systems) that  “  plus ” and in fact, the! ! œ !   

statement  “  plus ”  because we haven't! ! œ !   has no meaning yet at all
defined plus what “ ” means in a Peano system.

We  say , because (right now) that statement is just a newcannot # † # œ %
way of writing  ! † ! œ !    which, at the moment, has no meaning at
all, because we haven't even defined what it means to “multiply”  objects in a



Peano System.

We can, however, use these new names now to record things that we  already know.do
For example, the axioms for a Peano system now read:

 P1)  There is one special object named “ ” in ! c
 P2)  For each object , there is exactly one object in  called its 8 − c c successor
        (and denoted 8 Ñ

 P3)   is not the successor of any object, that is, ! Ða8 − Ñ 8 Á !c 

 P4)  Different objects have different successors, that is
   ,  a7 a8 − Ð7 Á 8 Ê 7 Á 8 Ñc  

 P5) Suppose  If   and ifE © Þ ! − Ec
   Ða8 − Ñ Ð8 − E Ê 8 − EÑc 

 then .E œ c

Just because of how we named things, statements like these are true:

     (i.e.,  is the successor of ) ! œ " " ! ß

  ! œ " œ #ß 

  % œ &

If we had decided instead to use the naming system in the first row of the table, the
following would be true:

  œ † œ
  œ † ‡ œ œ
  ð € œ

The theorems we already proved, with the new naming system, can now be written:

Theorem 1  For all , either  or  for some 8 − 8 œ ! 8 œ 7 7 −c c

Corollary 2  If  and , then  for a  .8 − 8 Á ! 8 œ 7 7 −c c unique

Theorem 3  For all , 8 − 8 Á 8c 

Theorem 4  If , then or can be obtained from  by applying the8 − 8 œ ! 8 !c
successor operation finitely often.

Corollary 5  If  and , then one of  and  can be obtained from7ß8 − 7 Á 8 7 8c
the other by applying the successor operation finitely often.



Defining Arithmetic in a Peano System

Addition Let  be a Peano system in which we have named the elements .c Ð !ß "ß #ß ÞÞÞÑ

First, we want to define addition: what does  mean?  For any given  in , the7 8 7 c
definition tells (using P5, the induction axiom)  what it means to “add , on the right, to8
7.”

Definition A   Suppose .  Define7 − c

 i)     and7 ! œ 7
 ii) a8 − ß Ð7  8 Ñ œ Ð7 8Ñc  

For any given ,  we can use P5) to show that  has been defined for every :7 7 8 8

 Suppose  Let  is defined7 − Þ E œ Ö8 − T À 7  8 ×Þc

  By i), .! − E

  If  then  is defined.  So then  is also defined8 − Eß 7 8 7 8

  because ii) defines as the successor of   in  .7 8 7 8 c
  Therefore 8 − EÞ

 By P5), .  E œ ñc

Example  Suppose .  Then 7 − c
  
    (by definition Ai)7 ! œ 7
     because “ ” is the name we assigned to 7 " œ Ð7 ! Ñ " ! 

     by Definition Aiiœ Ð7 !Ñ

     by Definition Aiœ 7

(Note: so it turns out, as a result of our definition of addition,  that “add to ” is the" 7
same thing as “take the successor of .”7 )

   In particular, if we let ,  the preceding calculations7 œ !
   show that

 !  ! œ !
 !  " œ ! œ "

 !  # œ Ð!  "Ñ œ " œ # 

   If we let , we see that the preceding calculation shows that7 œ "
   , and the name we assigned to is  so ."  " œ " " # À "  " œ #   

   



   Similarly
     2  " œ # œ $

     ,$  " œ $ œ %

.               etc.

Ð ÑBy convention, let's agree that we may also write  for 7 Ð7 Ñ  

     because “ ” is the name we assigned to “ ”7 # œ Ð7 " Ñ # " 

     by Definition Aiiœ Ð7 "Ñ

     by the preceding exampleœ Ð7 Ñ 

   Letting .. gives the specific facts7 œ "ß #ß Þ

   "  # œ " œ # œ $ 

   #  # œ # œ $ œ % 

    etc.
 

   Similarly, for any , the recursive definition of addition lets us7ß8
   work backwards “deeper and deeper” until, with a lot of patience
   but only finitely many steps  we eventually figure out the 
sum
   .  F7 8 or example, that   &  % œ * Ðgive a
   justification for each stepÑ:

  &  % œ &  $ œ Ð&  $Ñ œ Ð&  # Ñ œ Ð&  #Ñ    

 œ Ð&  " Ñ œ Ð&  "Ñ œ Ð&  ! Ñ    

 œ Ð&  !Ñ œ & œ ' œ ( œ ) œ *    

From the definition of addition (Ai), we know that  for any   7 ! œ 7 7 − Þc BUT
that  mean that we can say  ,  because we haven't yet proved thatdoesn't ! 7 œ 7
addition in  is commutative.  The next theorem is a first step in that direction.c

Theorem 6   Ða8 − Ñ !  8 œ 8 œ 8  !c   

Proof   Let   We know  by the Definition Ai)8 − Þ 8  ! œ 8  that equation is
included in Theorem 6 as contrast to It is the statement  !  8Þ Ða8 − Ñ !  8 œ 8c  
that we need to prove. Let E œ Ö8 − À !  8 œ 8×Þc

 If , then , by Definition Ai).  So 8 œ ! !  ! œ ! œ !  ! 8 œ ! − EÞ
 
 Suppose that .  Then8 − E
     (by Definition Aii, with !  8 œ Ð!  8Ñ 7 œ !Ñ 

     because œ 8 Ð 8 − EÑ

 Therefore 8 − EÞ



By the induction axiom P5), .   E œ ñc

To prove that addition is commutative and associative, it's helpful to begin by proving a
lemma.

Lemma 7  Ða7 − ÑÐa8 − Ñ 7  8 œ Ð7 8Ñ œ 7 8c c   

Proof  We already know that  by the Definition Aii)Ð7  8Ñ œ 7 8  
7 8 included in Lemma 7 just as contrast to    It is the statement7  8Þ

Ða7 − ÑÐa8 − Ñ 7  8 œ Ð7 8Ñc c   that we need to prove.

Let .  We need to show that 7 − Ða8 − Ñ 7  8 œ Ð7 8Ñc c  

Define .  We want to show that E œ Ö8 − À Ð7  8Ñ œ 7  8× E œ Þc c 

  (using Definition Ai), so Ð7  !Ñ œ 7 œ 7  ! ! − E  

 Suppose that We need to show  that is, we need to8 − EÞ 8 − E 

 show that Ð7  8 Ñ œ 7  8 À   

  
   Definition Aii)Ð7  8 Ñ œ Ð7  8Ñ Ð   

          (because )œ Ð Ð7 8Ñ Ñ 8 − E 

       (Definition Aii)œ Ð 7 8 Ñ 

By P5), E œ Þ ñc

Theorem 8  a) Ða7 − ÑÐa8 − ÑÐa: − Ñ 7 Ð8  :Ñ œ Ð7 8Ñ  :c c c
            ( )Eddition is .associative

           b) Ða7 − ÑÐa8 − Ñ 7 8 œ 8 7c c
  ( )Eddition is .commutative

Proof   a)  Suppose  be any objects in the Peano system  We need to show that7ß8 Þc

          Ða: − Ñ 7 Ð8  :Ñ œ Ð7  8Ñ  :c

Let   We want to show that .E œ Ö: − À 7  Ð8  :Ñ œ Ð7 8Ñ  :×Þ E œc c

  0 :     by Definition Ai)− E 7 Ð8  !Ñ œ 7 8 Ð
        by Definition Ai , again)œ Ð7 8Ñ  ! Ð Ñ

  Suppose, for some , that   We  show that must be in : : − EÞ : EÞ 



    (by Definition Aii)7 Ð8  : Ñ œ 7 Ð8  :Ñ 

      (by Definition Aii, again)œ Ð7 Ð8  :ÑÑ

     because œ ÐÐ7 8Ñ  :Ñ Ð : − EÑ

      (by Definition Aii, again)œ Ð7 8Ñ  :

   Therefore : − EÞ

By P5), E œ Þ ñc

 b)  Suppose   We must show that .7 − Þ Ða8 − Ñ 7 8 œ 8 7c c

Let .E œ Ö8 − À 7  8 œ 8 7×c

  , by Definition Ai, and we proved in Theorem 6 that7 ! œ 7
  .  Therefore ! 7 œ 7 ! − EÞ

  Suppose that . We will show that must be in .8 − E 8 E

    (by Definition Aii)7 8 œ Ð7 8Ñ 

      (because )œ Ð8 7Ñ 8 − E

      (by  Lemma 7)œ 8 7

  Therefore .8 − E

By P5),     E œ Þ ñc

Because addition is associative, we often write things like  without7 8 :
parentheses, because it doesn't matter whether we interpret this as meaning
Ð7  8Ñ  : 7 Ð8  :ÑÞor

Summary:  We have defined addition in .  We have proved the necessary theoremsÐ  Ñ c
to compute for any .  The addition we created turned out to be7 8 7ß8 − c
commutative and associative, and to have a “neutral” element, ! À 7  ! œ ! 7 œ 7
for all In other words (as much as we can see, so far) addition in  behaves7 − Þc c
exactly like ordinary addition does in our infromal, intuitive system .=

       In , we can also multiply.  So now we hope to define a multiplication=
operation in  that behaves just like multiplication in .c =



Multiplication

We also want to define multiplication in .  We do that using addition and the successorc
operation.  Then we need to look at some theorems about multiplication behaves in  andc
how multiplication is connected to addition.

We could try making a definition like

  “  means the result of   to itself  times.”7 † 8 7 8adding

But this is an inconvenient way to put it because it doesn't give us a precise   “formula
7 † 8 œ ... ” to work with:  so what do we do?

We stop and look for motivation.  Think about how multiplication works in the
informal system .  In ,  , and,  if you already know how to find ,= = 7 † ! œ ! 7 † 8
there is a formula telling you how to find , namely7 † Ð8  "Ñ
  
  7 † Ð8  "Ñ œ 7 † 8 7

We use this fact about the informal system , to inspire our  of= definition
multiplication in the formal system .  Of course, this makes it likely thatc
multiplication in  will, in fact, act like multiplication in the informal system, .c =
And that's what we want.  We are trying to show how to create, from very simple
assumptions, a formal system  that acts like , so we “build in” what we need toc =
make the finished product be what we want it to be.

Definition M  Suppose .  We define7 − c

 i)     and7 † ! œ !
 ii)   for any ,  8 − 7 † 8 œ 7 † 8 7c 

( )Sometimes we will just write “ ” for “ ”78 7 † 8Þ

Exercise:  Suppose .  Verify (just as we did for addition) that  is defined for7 − 7 † 8c
all .8 − c
 
Example  For any ,7 − c

  7 † " œ 7 † ! œ 7 † ! 7 œ ! 7 œ 7

  7 † # œ 7 † " œ 7 † " 7 œ 77

  7 † $ œ 7 † # œ 7 † " 7 œ Ð77Ñ 7

   etc.

  For example, $ † " œ $



    ( )$ † # œ $  $ œ ' using earlier work on addition
    
              3% † œ % † # œ % † #  % œ % † "  % 

    œ Ð% † "  %Ñ  %
    œ Ð% † !  %Ñ  % œ ÐÐ% † !  %Ñ  %Ñ  %

    œ ÐÐ!  %Ñ  %Ñ  % œ Ð%  %Ñ  %
    (œ using all the operations for computing sums)...
          œ )  % œ ÞÞÞÞ œ "#

The next lemma gives a useful variation on the equations in Definition M.   It is an
analogue (for multiplication) of Lemma 7 (about addition).

Lemma 9   For all ,7ß8 − c
   
 a) ! † 7 œ ! œ 7 † !
 b) 7 † 8 œ 7 † 8  8

Proof  Suppose 7 − c

 a) by Definition Mi).  What we need to prove is that! œ 7 † !
 ! † 7 œ !

 Let E œ Ö7 − À ! † 7 œ !×c

   because  (by Definition Mi)! − E ! † ! œ !
  
  Suppose  We will show that 7 − EÞ 7 − EÞ

     by Definition Mii! † 7 œ ! † 7  ! Ð Ñ

     since œ !  ! 7 − E
      (by Definition Ai)œ !

  Therefore 7 − EÞ

 By P5),   .     E œ ñc

 b) Let  E œ Ö8 − À 7 † 8 œ 7 † 8  8×c 

  ,  because     (by Definition Mi)! − E 7 † ! œ !

      (by Definition Mi), again)œ 7 † !
       (by Definition Ai)œ 7 † !  !

  



  Suppose .    We show that To do this, we need to show8 − E 8 − EÞ

that
  7 † 8 œ 7 † 8  8 Þ   

    (by Definition Mii)7 † 8 œ 7 † 8 7   

      (because )œ Ð7 † 8  8Ñ 7 8 − E

    (by Theorem 8: addition isœ 7 † 8  Ð8 7 Ñ

         associative)
       (by Definition Aii)œ 7 † 8  Ð8 7Ñ

    (by Theorem 8; addition isœ 7 † 8  Ð7 8Ñ

         commutative)
    (by Definition Aii)œ 7 † 8  Ð7 8 Ñ

    (by Theorem 8: addition isœ Ð7 † 8 7Ñ  8

         associative)
        (by Definition Mii)œ 7 † 8  8 

  Therefore 8 − EÞ

 By P5,  .     E œ ñc

We can now prove a connection between addition and multiplication (the distributive
rule) and see that multiplication is associative and commutative.  For convenience, we
agree to write  for .78 7 † 8

Theorem 10   Ða7 − ÑÐa8 − ÑÐa: − Ñc c c
 
 a)  7Ð8  :Ñ œ 78 7: Ð †  and  are connected by the
            distributive rule Ñ
 b)   (7Ð8:Ñ œ Ð78Ñ: Multiplication is associative.Ñ
 c)    (78 œ 87 Multiplication is commutative.Ñ
 
Proof a) The proof of a) is an assigned problem in the homework.  We assume a) in the
arguments below.

 b) Suppose .  We need to show that   7ß8 − Ða: − Ñ 7Ð8:Ñ œ Ð78Ñ:c c

Let   We want to show .E œ Ö: − À 7Ð8:Ñ œ Ð78Ñ: ×Þ E œc c

 since    (by Definition Mi)! − E 7Ð8 † !Ñ œ 7 † !
      (by Definition Mi, again)œ !
   ,  (by Definition Mi, again)  œ Ð78Ñ † !
 
Suppose, for some , that Then: : − EÞ

    (by Definition Mii)7Ð8: Ñ œ 7Ð8:  8Ñ

         (by part a) of this theorem: theœ 7Ð8:Ñ 78



              distributive rule)
       (because )œ Ð78Ñ: 78 : − E
      (by Definition Mii)œ Ð78Ñ:

 Therefore : − EÞ

By P5,  .  E œ ñc

 c)   Suppose .  We need to show that 7 − Ða8 − Ñ 78 œ 87c c

Let  We want to show .E œ Ö8 − À 78 œ 87×Þ E œc c

  because   (by Lemma 9)! − E 7 † ! œ ! œ ! † 7
       
 Suppose, for some , that   Then8 8 − EÞ

    (by Definition Mii)78 œ 787

             (because œ 877 8 − EÑ
             (by Lemma 9)œ 8 7

  Therefore 8 − EÞ

By P5,       E œ ñc

Because multiplication is associative, we often write things like  without78:
parentheses, because it doesn't matter whether we intended  or Ð78Ñ: 7Ð8:ÑÞ

Example  An earllier example (with showed that  7 œ $Ñ 7 † $ œ Ð77Ñ 7Þ
We could also get this fact from :addition and the distributive law

 Ð7 7Ñ 7 œ Ð7 † " 7 † "Ñ 7 † "

 œ 7 † Ð"  "Ñ 7 † " œ Ð7 † #Ñ 7 † " œ 7Ð#  "Ñ œ 7 † $Þ

By the  law for multiplication, we can now say also thatcommutative

 7 † $ œ Ð77Ñ 7 œ $ † 7Þ



In the proofs that follow, we will now use the definitions of  and  more freely †
(without always citing an explicit justification for each and every step).  We will also
freely use that multiplication are associative and commutative, and that the distributive
law is true in .  In some arguments, such as the proof of part c) of the followingc
theorem, we use of results previously proven and don't need to use an induction in the
argument.

Theorem 11  Suppose 7ß8ß - − Þc

 a)  If , then 7 Á ! 7 8 Á !Þ

 b)  (   If  , then Cancellation for  Ñ 7 - œ 8  - 7 œ 8Þ
      (  If  then The theorem- 7 œ -  8ß 7  - œ 8  -ß =97 œ 8Þ
      tells us that we can “cancel  on the left” too- ß Þ)

 c)  If  and , then 7 Á ! 8 Á ! 78 Á !Þ

Note:  We already proved in Theorem 8b) that addition is commutative.  Therefore it
doesn't matter in part a) whether the nonzero term, , is on the left or the right:7
7 8 œ 8 7 À in  words, 11a) merely says that the sum of two obejcts from  is notc
! ! if one of the objects is not .
           Suppose   What can we conclude in  ?7 8 œ !Þ c

Proof     a) Suppose   Let 7 Á !Þ E œ Ö8 − À 7  8 Á !×Þc

  because .! − E 7 ! œ 7 Á !

 Suppose that Then  (using P3).8 − EÞ 7 8 œ Ð7 8Ñ Á ! 

 Therefore .   By P5,  .    8 − E E œ ñ c

 b) This proof is an assigned exercise in the homework.

 c) Suppose  and   We know that  for some  (by Theorem 1),7 Á ! 8 Á !Þ 8 œ 5 5

 so   Since , we conclude that   (using part78 œ 75 œ 75 7Þ 7 Á ! 78 Á !

 a) of this theorem).  ñ

(Note:  Part c) is done without using induction (P5).  , the proof uses otherHowever
results (such as Theorem 1) that  proved using the induction axiom P5.were



Example For short, we can agree to write “ ”  for “ ”,    for “ ”, etc.8 8 † 8 8 Ð8 † 8Ñ † 8# $

Show that   (Ð8  "ÑÐ8  #Ñ œ 8  $8  #Þ# Justify each step!  Be sure that each
“arithmetic calculation” is one that we justified.)

Ð8  "ÑÐ8  #Ñ œ ÐÐ8  "Ñ † 8Ñ  Ð8  "Ñ † # œ Ð8 † Ð8  "ÑÑ  # † Ð8  "Ñ
   œ Ð8  8 † "Ñ  Ð# † 8  # † "Ñ œ Ð8  8Ñ  Ð#8  #Ñ# #

   œ Ð8  Ð8  #8ÑÑ  ##

   œ Ð8  8 † Ð"  #ÑÑ  ##

   œ Ð8  8 † $Ñ  ##

   œ Ð8  $ † 8Ñ  ##

   œ 8  $ † 8  ##

( )Be sure you can justify each step

On the surface, it looks like we have shown, without induction, that

  )  Ða8 − Ð8  "ÑÐ8  #Ñ œ 8  $8  #c #

In fact, nearly every step in the calculations is justified by a theorem whose proof  usedid
induction.

The truth is that a proof for  statement of the formany

  Ða8 − Ñ T Ð8Ñc

must depend on the induction axiom P5 (either in the proof itself, or in the proofs of
earlier theorems that are used in the proof).



Defining an Ordering Relation in a Peano System

Finally, we can introduce an “ordering ” (denoted by ) in  with another definition.Ÿ c

Definition O  Suppose We say iff 7ß8 − Þ 7 Ÿ 8 Ðb- − Ñ Ð7  - œ 8ÑÞc c
                       We write iff  7  8 7 Ÿ 8 7 Á 8Þand

Note:  We also write  as  the two relations are understood to mean the7 Ÿ 8 8   7 À
same thing.
           Similarly, the relations  and  are understood to mean the same thing.7  8 8  7

Example  For each :7 − c

    so, by Definition O,  ! 7 œ 7 ! Ÿ 7

   so, by Definition O,  7 ! œ 7 7 Ÿ 7Þ

Theorem 12  For all 7ß8ß : − Àc

 a)     7 Ÿ 7
 b)  if  and , then 7 Ÿ 8 8 Ÿ : 7 Ÿ :Þ
 c) if  and , then 7 Ÿ 8 8 Ÿ 7 7 œ 8Þ

Proof   a) See the example, above.

 b) If , there is a  such that , and7 Ÿ 8 - 7 - œ 8
 if , there is a  such that 8 Ÿ : . 8  . œ :Þ
     Therefore 7 Ð-  .Ñ œ Ð7 -Ñ  . œ 8  . œ :ß
 so 7 Ÿ :Þ

 c) If , there is a  such that , and7 Ÿ 8 - 7 - œ 8
 if , there is a  such that 8 Ÿ 7 . 8  . œ 7Þ

    Since 7 - œ 8ß
  soÐ7  -Ñ  . œ 8  . œ 7ß
  7 Ð-  .Ñ œ 7 œ 7 !Þ
 Theorem 11b  lets us cancel the and getÑ 7 -  . œ !Þ
 But then, by Theorem 11a),  - œ . œ !Þ

   Therefore  8 œ 7 - œ 7 ! œ 7Þ ñ



Theorem 13 Ða7 − Ñ Ða8 − Ñ Ð7 Ÿ 8 8 Ÿ 7Ñc c or 

Proof  Let   For this , we need to show that or .7 − Þ 7 Ða8 − Ñ Ð7 Ÿ 8 8 Ÿ 7Ñc c
Let or   is true .  We will show that E œ Ö8 − À 7 Ÿ 8 8 Ÿ 7 × E œ Þc c

 The example above shows that , so ! Ÿ 7 ! − EÞ

 Suppose that   8 − EÞ ÐSince  is defined by a statement using “or”,  there areE
 two cases to consider.Ñ

  i) If , then  such that .  In that case,7 Ÿ 8 b- − 7 - œ 8c
   so  and therefore 7 - œ Ð7 -Ñ œ 8 7 Ÿ 8 8 − EÞ    

  ii) If ,  then  such that 8 Ÿ 7 b- − 8  - œ 7Þc

   If , then so , which means that- œ ! 8 œ 7ß 7 " œ 7 œ 8 

   , so 7 Ÿ 8 8 − EÞ 

   If , then  has a predecessor  in .- Á ! - . À - œ .c 

   Then  (by Lemma 7)8  . œ 8  . 

     ,  so œ 8 - œ 7 8 Ÿ 7

   and therefore 8 − EÞ

  In both cases, 8 − EÞ

Therefore, by P5,  E œ Þ ñc

Note:  Corollary 5 in the “Peano Systems” notes was printed in italics because it seemed
to involve some questionable reasoning.  Theorem 13 is a correct, rigorous version of
what Corollary 5 was trying to say:  if  then “one of these two objects in ”7 Á 8ß œc
“the other object ” and, as we have seen in several examples, “adding ” turns out to - -
be the same as repeated applications of the successor operation.     

Corollary 14 Ða7 − ÑÐa8 − Ñ Ð7  8 7 œ 8 7  8Ñc c   or  or 

Proof ,  By Theorem 13 we know or If , then (by definition of7 Ÿ 8 7   8Þ 7 Á 8
 Ñß 7  8 7  8 ñwe know that  or .  

Theorem 15    (Cancellation for multiplication) If  and  and ,7ß8ß : − : Á ! 7: œ 8:c
then 7 œ 8Þ

(Since multiplication is commutative, if then  Therefore:7 œ :8ß 7: œ 8: =97 œ 8Þ
theorem tells us that we can also cancel a nonzero factor of  on the left.: )

Proof   Homework exercise.



Finally, we want to check that the “order relation”  interacts nicely with addition andŸ
multiplication  ( .)   Forjust as , + and  interact nicely in the informal system Ÿ ß † =
example,

Theorem 16   Suppose   and that Then7ß8ß : − 7 Ÿ 8Þc

  a)   7 : Ÿ 8  :

  b   Ñ 7: Ÿ 8:Þ

Proof    a) Since , there is a  such that Then7 Ÿ 8 - − 7 - œ 8Þc

    soÐ7  -Ñ  : œ 8  :ß
   , soÐ7  :Ñ  - œ 8  :
   7 : Ÿ 8  :Þ ñ

  b) This is an assigned problem in the homework.

Exercise  Suppose that   Then there is a  in  for which B Ÿ CÞ - B  - œ CÞc
Prove that  is unique.-

( )Hint: Assume that alsao .  Compare  and .B  . œ C - .



Looking Back and Looking Forward

E  refers to some collection of “objects,” some axioms thatformal mathematical system
describe exactly how the objects behave, and the body of definitions and theorems that
grows out of the axioms.  A Peano system, its associated definitions and theorems, is an
example of a formal mathematical system.

An  mathematical system is a not very precise term. It's everyday usage for ainformal
bunch of related mathematical definitions and facts that we know:  for example, you
might describe what you know (or what we all together know) about calculus as an
informal mathematical system.

Another example would be our system of whole numbers, , together with all its algebra=
involving  and . We have been taking the point of view that the system of Þ † ß Ÿ
whole numbers, , is an informal system that (somehow) we seem to know a lot about.=
We want to create a formal system that acts just like this informal system.  The notion of
a Peano system seems like a good start in this direction.

We believe that the Peano Axioms P1-P5 are true statements about the informal system,
= when we   to be whole numbers, andinterpret the “objects” in a Peano system  c
interpret successor in c  to mean “the next whole number.”  Based on what we know
informally, it seems like the informal system   is a specific  for a Peano system.= model

The theorems that we proved for a Peano system  also turn out to be true when they arec
interpreted as being statements about whole numbers.  This is just what one would
expect: if the  of  are true when interpreted as statements about whole numbers,axioms c
then all the logical consequences of those axioms ( ) will also be true abouttheorems
whole numbers.

Mathematicians don't care (unless they are becoming philosophers) what whole numbers
“  are” how they  is what counts.  Because a formal abstract Peano systemreally behave
seems to behave just like the informal system , mathematicians can agree to define   as= =
a Peano system.

So can we just say  “   is a Peano system” and be done?  There are two things more to=
consider.  The first is easy to settle, and the second needs a little more work:

 i)  Peano system is ?  Are there many Peano systems?  Even if there are,Which =
 it doesn't matter:  we argued earlier in these notes that “all Peano systems behave
 exactly alike.”  If behavior is what counts, one Peano system is as good for the
 definition of  as another.  If  it doesn't matter much particular Peano= which 
 system we define  to be although it might convenient to settle on one= 
 particular Peano system.

 
 ii) But  any Peano systems at all?  Can we describe one?are there



 (We can't really give   as an example:    is just an informal mathematical= =
 system for which we are trying to find a formal definition.)  Can we somehow
 create a particular Peano system for which we can then  to say,  byagree
 definition, that this particular Peano system   ?is =

What would we use to create a specific Peano system?  Because  is supposed toset theory
be the foundation for mathematics, we try to build a Peano system in which the objects
are sets: they are the most fundamental objects mathematics has. So we will try to create

 i)  a collection  whose members are ,  andc sets

 ii) an operation in  that takes a given set in  and creates in  a new setc c c
 (denoted  and called the “successor of ” .B B Ñ

and to do this in a way that makes axioms P1)-P5) true.

If we can pull this off, we will have a specific, concrete Peano system, one built out of
sets).  Like any Peano system, this one will behave just like the informal system  . Then=
we can make a definition formally, once and for all that  particular Peano system  this
is officially the system of whole numbers.  The objects (sets) in  will be called thec
whole numbers  so that (officially) every whole number is some set.

At the risk of being repetitive, let's notice:  suppose we can create such a .c

i) We are  claiming to have  that  is it makes no sense to prove anot proved = c 
definition.  But  the whole number system to be this Peano system  defining doesc
give us a formal system which behaves, as best we can judge, just like the
informal system  that we started with and which we were trying to “formalize.”=

ii) There might be  ways for someone to get a system that behaves “just likeother
the informal system , ” and the person might officially define that system instead=
to be .  For philosophical or aesthetic reasons, the person might prefer a different=
approach and definition.  But mathematically, the choice really doesn't matter:
how the whole numbers  is what  matter mathematically. Thereforebehave does
mathematicians can all agree to live with whatever particular formal definition for
= is chosen.



Getting a Peano system of sets

We want to construct a collection of sets, together with a “successor set” operation inside
the collection,  that turns out to be a Peano system.

The idea of a “successor set” came up earlier in a homework exercise and it turns out to
be exactly what we will need.  Here is the definition again.

Definition   For any  ,    The set  is called the set successor of B B œ B ∪ ÖB×Þ B Þ  B

Notice that

 i) The successor set  contains for its elements:  all the elements that were in theB

set , together with one additional .B ÖB×

   is always trueB © B

  is always trueB − B 

   always contains exactly one more element than .B B

  
 ii)  Ö+ß ,× œ Ö+ß ,× ∪ Ö Ö+ß ,×× œ Ö+ß ,ß Ö+ß ,××

      ‘ ‘ ‘ œ ∪ Ö ×

Example

  g

    g œ g ∪ Ög× œ Ög×

      g œ Ög× œ Ög× ∪ ÖÖg×× œ Ögß Ög×× 

     g œ Ögß Ög×× œ Ögß Ög×× ∪ ÖÖgß Ög××× œ Ögß Ög×ß Ögß Ög×× 

  ã
  and so on.



Definition   Suppose  is a set (collection) of sets.  is called an  set ifM M inductive

  a)  ,  andg − M
  b)  if  then B − Mß B − MÞ

We ask:   any inductive sets?  Informally, it seems like there should be.  Forare there
example, you can imagine the set

   M œ Ögß g ß g ß g ß ÞÞÞ×  

However, this “example” of an inductive set even though its suggestive seemsM  
little vague if we're trying to be careful.  This set is only inductive because it is described
very casually using “ ” the mathematical equivalent of “etc., etc., etc.”ÞÞÞ 

If we tried to be more precise about writing down a definition for this set , we'dM
try to write something like

  M œ ÖD − Y À ‡‡‡ ×

and this highlights a couple of problems:

 i) What can the universe be?  Informally we'd like to say that the 's areY D
 chosen from  the “set of all sets ”  But the idea of a “set of all sets”Y œ Þ
 quickly leads to contradictions (similar to Russell's Paradox).

 ii) Even if we had a good choice for , what would the description Y ‡‡‡
 be?
 
 The set  suggested above appears to contain the empty set together withM
 successors of any sets already in  that isM À

   or M œ ÖD − Y À D œ g ÐbA − MÑ D œ A ×

 But this is a self-referential definition the members of  members are M
 described in terms of ! This also can lead to paradoxes like Russell'sM
 Paradox.

   
To decide what to do, we need to a brief look at the axioms for set theory itself.  These
axioms are “as deep down as we can ever go”because set theory, we have agreed, is to be
the very foundation for all mathematics.  In other words, all mathematics should flow
from the axioms for set theory.

Axiomatic ( ) set theory is a system of  (called sets) and a  (denotedformal objects relation
by “ ”) between some of these objects.  We know  about these objects except− nothing



that they behave according to the rules described in a certain set of ten axioms called
the ZFC axioms ( the “Zermelo-Fraenkel-with-Choice” axiomsœ ÑÞ
(Of course, these axioms were chosen in the first place to describe a  system that formal
would behave, as best we can tell, “just like” naive ( ) set theory.informal )

A careful study of the ZFC Axioms, and the theorems that can be proved from them, is a
whole field of study in itself, usually called “Axiomatic Set Theory.”  In order to get the
flavor, there follows a partial list of the axioms; it omits some of the more technical
axioms that we don't need to think about. .  (The quantifiers in these axioms  apply to the
“universe” of sets so means “for all sets ”, etc.  Convince yourself that the ÐaBÑ B
English translations given below are correct.)



   Axioms for Set Theory:  Zermelo-Fraenkel-with-Choice (ZFC)

 ZFC1    aBaC Ð aD ÐD − B Í D − CÑ Í B œ CÑ
  “ Two sets are equal iff they have the same members. ”
 
 ZFC2    )bBaC ÐC Â B
  “ There is a set with no members (an empty set). ”

     If “two” sets both have no members, then they certainly have the same
     members (none at all !) so, by ZFC1, they are the same set.  In other
  words, the first theorem of ZFC could be “there is exactly one empty set.”
  So, for convenience, we can give it a name:  g 

 ZFC3     aBaC ÐbD a? Ð? − D Í Ð? œ B ” ? œ CÑÑÑ
  “ If  and  are sets, then there is a set ” in other words, twoB C D œ ÖBß C× 
  sets can be “paired” to create a new 2-element set.

 ZFC4  aBbC ÐaD ÐD − C Í b, ÐD − , • , − B ÑÑÑ
  “ For any set , there is a set  consisting of the members of theB C
  members of .”B
     We can agree to give this set  a name:  C B
 ZFC     (& aBbC ÐaD D − C Í ÐaA ÐA − D Ê A − BÑÑÑÑ

  If we agree to  “ ” to be shorthand for  define D © B aA ÐA − D Ê A − BÑ
  Then ZFC5 could be written     .  That is,aBbC ÐaD ÐD − C Í D © BÑÑ
  axiom ZFC5 says “every set  has a power set .”B C

 ZFC6    (  (bM Ðg − M • aC C − M Ê C − MÑ Ñ

  There exists an inductive set.

   plus 4 other more technical axioms (omitted )  ZFC7,  ZFC8, ZFC9, À
        ZFC10 (AC)

 The axiom ZFC10  is called the .  It causes someAxiom of Choice (AC)
  controversy among those mathematicians who worry aboutphilosophical
 foundations of mathematics, so  mathematicians omit it from thea few
 list.   If AC is omitted, then axioms 1-9 are referred to as the “ZF”  axioms.
 But the 10-axiom system ZFC is the axiom system most mathematicians would
 use for set theory (and therefore to develop all of mathematics).
 
 We might say a little about the Axiom of Choice later in the course.



We have taken a naive (informal) approach to set theory and will continue to do so.  But
everything that we have done (or will do) with sets can be justified by theorems provable
from the ZFC axioms. For our purposes, we mentioned the ZFC axioms for two reasons.

First, because we were looking for an inductive set.  The ZFC axioms guarantee that an
inductive set exists.  Moreover, we can infer that ZFC6 was probably included as an
axiom for set theory because it's not possible (using the other axioms) to prove that an
inductive set must exist:  if you want set theory to have inductive sets (and our intuition
expects that it should) then you have to build-in an axiom to somehow make that happen.

Second, the ZFC axioms are important.  They are the basis for set theory which, in terms,
can be used as a foundation for mathematics.  Every math major should see what some of
these axioms are like, just to get an idea of what all mathematics is built on.

To return to the question we were asking:  we are convinced (informally) that set theory
should contain an inductive set.  Based on the axioms, we assume that there is at least
one inductive set and proceed from there.

Definition I‡  Choose an inductive set  and defineM

    for  inductive set  (*)W œ ÖB − M À B − N N×every

By definition   In fact the definition tells us even more that ß W © MÞ    is a subset ofW
every inductive set N   (  Therefore you could think ofCheck! What does   mean?W © N ). 
describing  by the equation is an inductive setW W œ ÖN À N ×Þ

As a matter of fact, one can prove from the ZFC Axioms that there are many
different inductive sets.  But

 i) The definition (*) of  would make sense even if there were only oneW
 inductive set, .M

 ii) If a different inductive set  were chosen to use in definition (*), thenM w

 we would still get the very same set because in bothW 
 cases W œ ÖN À N × is an inductive set

W Wis an intersection of inductive sets, but we can't assume just assume that makes  itself
an inductive set.  However, the next theorem settles that question.

Theorem 17   W  is an inductive set.

Proof   a)  is in  inductive set so g N ß g − WÞevery

  b) Suppose .  Then (by definition of )  is a member of  inductiveB − W W B every
 set   Therefore  is also a member of  inductive set  (by definition ofN Þ B N every



 “inductive set”).  Hence B − WÞ

Therefore  is inductive.   W ñ

Since  for every inductive set , and because Theorem 17 tells us that  itself is anW © N N W
inductive set, we can now say that  is the   .  In particular thisW smallest inductive set
means that

 ;  therefore  therefore  therefore  and so on.g − W g − Wà g − Wà g − Wà  

Caution:  We are using the same notation for “successor of a set ”  as we used forB B

“successor” in a Peano system.  But don't let the notation deceive:  we have no right to
assume that the successor operation for sets obeys the rules axioms P1-P5.  We need to
check whether that is true.

Definition    ! œ g (We are simply agreeing that  will be another name for .)! g

What can we say about and the successor operation?W
Since , we now have! œ g − W

  P1:  There is a special object in  named .W !
  ( ! gÞ is the set )

Because  is and inductive set, the successor set  for each set  in  is also in .W B B W W

Therefore

  P2:  For every object , there is a successor in .B − W B W

For any set we have that , so  Bß B − B ∪ ÖB× œ B B Á g Þ 

So

  P3:  For all ,  B − W B Á ! Ð œ gÑ

Suppose , and suppose thatE © W

   i)   ,  and! Ð œ gÑ − E
   ii) ÐaB − WÑ ÐB − E Ê B − EÑ

These assumptions i) and ii) about  say that  is an inductive set.  But  and  isE E E © W W
the  inductive set, so This shows thatsmallest E œ WÞ

  P5:  Suppose E © W À
            i)  if   ,   and! Ð œ gÑ − E
          ii) if   ÐaB − Ñ ÐB − E Ê B − EÑ= 

  



                         then E œ WÞ
At this point we have almost shown that , with the successor set operation, forms aW
Peano system.  But we still  P4:  that if  and  then   This takes aBß C − W B Á Cß B Á C Þ 

little more work.

We will be using here another definition introduced earlier in the homework.

Definition   A set  is called  iff  5 ÐaBÑÐ aCÑ ÐB − C − 5 Ê B − 5Ñtransitive
( ”Less formally,  is transitive if  “every member of a member of  is a member of .B 5 5

For example Ögß Ög×ß Ögß Ög× ×× Ög ÖÖg×× × is transitive but ,  is  transitive.not

Theorem 18  For any set , the following are equivalent:E

  i)  is transitiveE
  ii) E © E
  iii) + − E Ê + © E
  iv) E © ÐEÑc

Proof   This theorem was an exercise in homework.  (For Spring 2009, see the HW 5
solutions online if you're uncertain about the proof.)   ñ

Theorem 19  If  is a transitive set,  then 5 5 œ Ð5 ÑÞ 

Remember: Ð5 Ñ  just means the “set of all members of the sets that are in the
collection .”5

For example,  if  , then     5 œ Ögß Ög ×× 5 œ Ög ß Ög ×× ∪ ÖÖg ß Ög ×××

œ Ö gß Ög×ß ÖÖgß Ög××× 5 œ g ∪ Ög× ∪ Ögß Ög×× œ Ög ß Ög× œ 5Þso    

Proof i) Suppose .  Then , where .B − Ð5 Ñ B − D D − 5 œ 5 ∪ Ö5×  

 
 if , then  so    is assumed to be transitiveD − 5 B − D − 5 B − 5 5because
 if , then  so D − Ö5× D œ 5 B − 5

Either way, we have .  Therefore .B − 5 Ð5 Ñ © 5  

 ii) Suppose .  Since  Therefore B − 5 5 − 5 ß B − Ð5 ÑÞ 5 © Ð5 ÑÞ   
Hence .    Ð5 Ñ œ 5 ñ



Alternate Proof   ( )a little slicker: think about each step  Ð5 Ñ œ Ð5 ∪ Ö5×Ñ

œ 5 ∪ 5 5 5 © 5 E œ 5 .  Since  is transitive,   (using  in Theorem 18).  Therefore5 ∪ 5 œ 5Þ ñ

Corollary 20   If  is a transitive set, then  is also transitive.5 5

Proof  For any set  Suppose  is transititve.  By Theorem 19,5ß 5 © 5 Þ 5Ð5 Ñ œ 5 © E œ 5 Ñ ñ   k .   B y Theorem 18 (with ,  k is transitive.  

The next theorem gives us lots of examples of transitive sets.

Theorem 2"  If , then  is transitive.5 − W 5

Proof   We use the fact that P5 is true in the set .   Let is transitiveW E œ Ö5 − W À 5 ×Þ

  i)   is transitive, so ! Ð œ gÑ ! − EÞ

  ii) Assume .  Then  is transitive so, byCorollary 20,  is5 − E 5 5

  transitive. Therefore 5 − EÞ

By P5, E œ WÞ ñ

Now we can finally show that the remaining Peano axiom, P4, is true in the set .W

Theorem 22 P4  for   Suppose If  , then Ð œ WÑ Bß C − WÞ B Á C B Á C Þ 

Proof ( )  Since and  are in , they  are transitiveWe will prove the contrapositive. B C W  

sets (by Theorem 2 ).  So if  , then Theorem 19 gives us that" B œ C 

B œ B œ C œ C ñ    

We have now achieved the objective.  The set , as given in Definition I , with the setW ‡

successor operation, is a specific Peano system (built out of sets).  We will choose this
specific Peano system  for our definition of the whole number system  .W =

 Definition   The  is defined to be the set  (as given inset  of whole numbers= W
 Definition I ).  A  is any member of the set  .‡ whole number =

Names for the whole numbers



We can name the objects in  using the same system we used for any abstract Peano=
system:
  Member of        Name =
        (set)

       g !  
        g œ Ög× "

  { }     g œ g œ Ögß Ög×× # 

       g œ Ögß Ög×× œ Ögß Ög×ß Ögß Ög××× $ 

    ã
   
Thus, in our official definition of , the whole numbers really certain  sets that= sets 
have been given the names !ß "ß #ß ÞÞÞ Þ

Some interesting (amusing?) observations show up in this list:

  i) ! œ g
   " œ Ög× œ Ö!×
   # œ Ögß Ög×× œ Ö!ß "×
   $ œ Ögß Ög×ß Ögß Ög××× œ Ö!ß "ß #×

  The pattern suggests a theorem (which we won't take the time to prove):
   !every whole number is the set of preceding whole numbers

  ii)  ...,  in other wordsg − Ög× − Ögß Ög×× − Ögß Ög×ß Ögß Ög××× −
  
       ! − " − # − $ − ÞÞ
  
  Also, for example,  0 3 and 2 .  If you continued the list of− − $
  successors and names, you would keep observing the pattern:

    as defined in a Peano system)  7  8 Ð Í 7 − 8

  That is also a theorem that can be proved.

 Definition  8 8 − 8 Á !Þ is called a if  and   The set of naturalnatural number =
 numbers  is defined to be the set . = Ö!×

Therefore,  natural numbers are also officially defined as sets.



Conclusion not:  Having done all this, the point is  that in the future you should always
be thinking of the whole numbers as sets.  In fact, you usually should think of the whole
numbers the way you always have.

  The “big picture” items that are important are:

   1) There is a very small collection of axioms (P1-P5) from which
   all aspects of the whole number system (including
   arithmetic and rules for inequalities) can be carefully and
   systematically proven,  and that

   2) the whole numbers, and their arithmetic,  be “built” from setcan
   theory in accordance with the view the sets should be a
   foundation for everything we need in mathematics.

   We will see soon that the set of integers can be built from the set of
   whole numbers (sets) so each integer will turn out to be a set.
   The set of rationals can then be built from the set of integers so
   each rational number will turn out to be a set ;  and so on.


