Practice with Contrapositives and Converses

For each proposition, write the contrapositive and the converse. Which ones are true and which ones are false?

1. Suppose f is a function defined on the real numbers.
a) If f has a derivative at 0 , then f is continuous at 0
b) If $f^{\prime}(x)=0$ for every x, then $f(x)=0$ for every x.
c) If f has a local maximum at $x=0$, then $f^{\prime}(x)=0$
2. If the equation $a x^{2}+b x+c=0$ has no real roots, then $b^{2}-4 a c \leq 0$.

Practice with Quantifiers

Universe $U=$ the set of all people

$$
\begin{array}{ll}
R(x) & x \text { is a robber } \\
L(x) & x \text { is a liar } \\
M(x) & x \text { is male }
\end{array}
$$

Translate into English:

$$
\begin{aligned}
& (\forall x R(x)) \Rightarrow(\forall x L(x)) \\
& (\exists x R(x)) \Rightarrow(\forall y L(y)) \\
& \forall x(R(x) \wedge L(x))
\end{aligned}
$$

$$
\forall x R(x) \Rightarrow \exists y(M(y) \wedge L(y))
$$

$$
\forall x((R(x) \wedge \sim M(x)) \Rightarrow L(x))
$$

$$
\forall x((R(x) \wedge \sim M(x))) \Rightarrow \forall x L(x)
$$

Universe $U=$ all people (living or dead)

$F(x)$	x is female
$P(x, y)$	x is a parent of y
$M(x, y)$	x is married to y
$S(x, y)$	x and y are siblings

Write in logical notation using these predicates, logical connectives and quantifiers:

Everybody has a brother

No siblings are married to each other.
x is the grandmother of $y \quad$ (not a proposition, but just a statement $G(x, y)$ about x and y - a new predicate defined by us in terms of the old ones)

$$
G(x, y):
$$

Everybody has exactly two grandmothers (use $G(x, y)$ from the preceding part)

Try your hand at something more complicated like:

1) x and y are cousins
2) everybody has an uncle
3) x is a bastard
