
The Basics of Set Theory

Introduction

Every math major should have a basic knowledge of set theory. The purpose of this chapter is to
provide some of that basic information.

Sets provide a useful vocabulary in many situations.  They are a handy language for stating interesting
results in all areas of mathematics  for example,

   “A group is a set such that...”   or
   “A basis for the vector space  is a set  of vectors such that ...”.Z U

Set theory had its origins in work done by Georg Cantor (during the late 19 century) on certain kindsth

of infinite series called Fourier series. However sets are not just a tool: like many other mathematical
ideas, “set theory” has grown into a fruitful research area of its own.

Moreover, on the philosophical side, most mathematicians accept set theory as a foundation for
mathematics  that is, the notions of “set” and “membership in a set” can be used as the most
primitive ideas in terms of which all mathematical objects and ideas can be defined.  From this point of
view,  in mathematics (numbers, relations, functions, ...) is a set. To put it extreme way,everything
most mathematicians believe (when pressed to the bottom line) that “mathematics can be thought of as
just a part of set theory.”  As this course goes on, we'll get some idea of why this point of view is
reasonable.

So, you ask, what is a set?  There are several different ways to try to answer.  Intuitively and this is
good enough for most of our purposes  a set is a collection of objects, called its  or elements
members.  For example, we can talk about “the set of United States citizens” or “the set of all real
numbers.”  The idea seems clear enough.  However, we have not really given a satisfactory definition
of a set it seems circular (after all, what is a “collection” if not just another way of saying “set”? ).

In the beginning, writers tried to give sharp definitions for “set,” just as Euclid tried to give definitions
for such things as “straight line” ( “a line which lies evenly with the points on itself ”).  Of courseœ
Euclid's definitions really wouldn't clarify much to somebody who didn't already have ideas about
straight lines.  Similarly, the old attempts to “define” a “set” were really not very satisfying. For
example, according to Cantor,

Unter einer Menge verstehen wir jede Zusammenfassung  von bestimmtenQ
wohlunterschiedenen Objekten in unserer Anschauung oder unseres Denkens (welche die
Elemente von  genannt werden) zu einem Ganzen  Q [By a set we are to understand any
collection into a whole  of definite and separate objects (called the elements of ) of ourM Q
perception or thought.]   ( )German seems to be a good language for this kind of talk.

More compactly, Felix Hausdorff, around 1914, stated that a set is “a plurality thought of as a
unit.”

At this stage, we have several options.



i)  We can use our intuitive, informal notion of a set and go on from there, ignoring any more
subtle issues just as we might not worry about a definition for “point” and “line” in
beginning to study geometry.

ii) We can try to give a formal definition of “set” in terms of some other mathematical objects.
We would be assuming, implicitly, that these other objects are even “more fundamental” or
“clearer” for our use as the foundational objects.

iii) We can take the notions of “set” and “set membership” as “ground zero” that is, as
primitive undefined terms.  We won't even ask what sets “really are.” We just write down
some rules (axioms) about how these things we call “sets” behave and proceed from there, in
accordance with these rules,  to prove new results and define new objects eventually
building up more and more of mathematics.

The  approach is sometimes called naive (or “informal”) set theory. Here, the word “naive” merelyfirst
refers to the starting point; it does not mean “simplistic” naive set theory actually can get  very
complicated.  Historically, set theory began along these lines.

The  option certainly is a logical possibility but it seems to be one that few if anysecond
mathematicians follow.  In the work  (mentioned in class), Russell andPrincipia Mathematica
Whitehead tried to use what we'd call “symbolic logic” as a foundation even more basic than set
theory.

The  option would take us into the subject called “axiomatic set theory.”  Although an enormousthird
amount of interesting and useful naive set theory exists, almost all research work in set theory
nowadays requires using this axiomatic approach (as well as a healthy does of mathematical logic).

As a practical matter, we are going to take the naive approach.  For one thing, the axiomatic approach
is not worth doing if it isn't done carefully, and that is a whole course in itself.  Moreover, axiomatic
set theory isn't much fun unless you have learned enough naive set theory to appreciate why an
axiomatic approach would be important. It's more interesting to try to make things absolutely precise
after you have a good overview.  (People were aware of lots a things about geometry before Euclid did
his axiomatization.)

As we go along, however, we will also make some side comments in the lectures and notes about the
axiomatic approach just to provide some perspective.  It is the axiomatic approach, when very carefully
worked out, that actually provides a foundation for mathematic in set theory.  In this course, we at least
want some glimpses of how the foundation is laid.

.



Preliminaries and Notation

Informal Definition 2.1  A  is a collection of things called its  (or ).  If  is a setset elements members E
and  is an element of , we write   If  is not a member of , we write .B B − EÞ B E BA AÂ

One way to write a small set is to list its members inside curly braces:    is the set havingE œ Ö"ß #ß $×
the numbers  as its members."ß #ß $

As the informal definition implies, we may also use the word “collection” (or other similar words such
as “family” ) in place of “set.”  Sometimes this is just for variety; sometimes it serves informally to
emphasize some point for example, we might refer to a set whose elements are other sets as a
“collection of sets” or a “family of sets,” rather than a “set of sets.”

In the same vein, using a  “ ” for a set but a  case letter like “ ” for a member ofcapital lowerE B
E is just a notational device to help us (psychologically) keep track of things.  We might also
use other letter styles to help. For example if , and  are sets, we might use a  letterEßF G script
like  to denote a family (set) of sets   and lower case letters like  forU UÀ œ ÖEßFßG× Bß Cß D
the members of the set .E

However, there's no logical necessity controlling the notation.  If we want to, we can use (say)
only lower case letters for everything.  We could, for example, have  .  It might thatsets Bß Cß D
A B A − BÞ is an element of , that is,   We might then form a new set
@ œ ÖÖBß C×ß ÖBß D×ß ÖCß D××  @ so that  is a set of sets of sets.  It's important to be able to
think at this level of abstraction sometimes, but you can see how the use of different cases and
fonts can be a useful .  You probably also agree that referring to  as a “family ofdevice @
collections of sets” rather than a “set of sets of sets” helps keep things straight even though
the phrases have identical meanings. .

We can describe sets in a couple of different ways:

By  the elements most useful when the set is a small finite set or an infinite set whoselisting 
elements can be referred to using  “...” 

For example,

 E œ Ö"ß #×
      the set of  œ Ö"ß #ß $ß ÞÞÞ× natural numbers

Some people include “ “ in what they call the set of natural numbers.  Whether!
 you do or don't is really just a convention about how you name things. When you
 are reading any particular math book, you always have to be sure how the author
 is using certain symbols because there are small variations like this.

          the set of = œ Ö!ß "ß #ß ÞÞÞ× whole numbers

 ,    the set of ™ œ Ö! „ "ß „ #ß ÞÞÞ× integers

By , that is, by suing some property to describe exactly what elements are in the set.abstraction
We do this by writing something like has a certain property .ÖB À B ×



For example,

  is a real number}    the set of all  numbers‘ œ ÖBÀ B real
 :  and  0}   the set of  numbers ™ ™œ Ö − ß ; − Áp

q p q rational
  and }     the set of  numbers ‘ œ Ö − ÂB À B B irrational

Following this procedure, we might write down things like

  {  and = 1} and {  and }.B À B − B À B −‘ ‘B  B Á B#

Of course, no real number is actually a member of either set both sets are .   The empty set is empty
usually denoted by the symbol  (which, by the way, is a Danish letter, not a Greek phi (  or ) ).  It isg F 9
occasionally also denoted by  . The “empty set” is also known by the more British name “null set.”Ö ×

It might seem odd to allow an empty set and even give it with a special symbol, but the alternative
would be to say that some expressions like  and = 1 , which look perfectly reasonableÖ  ×B À B − B‘ #

are, in fact, not sets at all.  Even worse, if we did not allow the possibility of an empty set, then we
might be  whether some things are sets because were uncertain whether there are any objectsuncertain
in the collection.   For example,  do you know whether
   
   and , where and  are irrationalÖB À B − B œ × ! ! ""

actually contains any members ?

Of course, our informal sets may contain any objects as elements.  But in mathematics we are not
likely to be interested in sets of aardvarks.  We will only use sets that contain various mathematical
objects.  For example, a set of functions

   is a continuous real-valued function defined on the closed interval Ö Ò+ß ,Ó ×0 À 0

or a set of sets such as

  1 , 1,2    or ,   or , .Ö Ö × Ö × × Ög× Ög Ög××

Of course, if  “everything in mathematics is a set,” then (at the “bottom line”) all sets in mathematics
are sets whose members are other sets (because what else is there?).

We say that , written  provided each element of  is also a member of .  TheA Bis a subset of A B , A© F
more formal definition is:

Definition    if  (  (E © F aBÑ B − E Ê B − FÑ
ÐRemember: it's customary of write “if” in a definition, but in as statement which is an “announced”
to be a definition, the “if ” really means “iff.”Ñ

We say that ,  when  and  have precisely the same elements.  The moretwo sets are equal E œ F E F
formal definition is:

Definition  E œ F ÐE © F • F © EÑ if  



Clearly, this is equivalent to saying:   ( )ÐaBÑ B − E Í B − F

If but  we say is a  of .E © F E Á F E Fproper subset

For example,  (order doesn't matter in writing down the elements in a set)Ö"ß #× œ Ö#ß "×
  ÖBß C× œ ÖCß B×
  ÖBß B× œ ÖB×

Two sets whose descriptions appear quite different may turn to be equal when you look more carefully
For example, you can easily check that

  and  ÖB À B − B  &B  #*B  "!*B  )B  "%! œ !× œ Ö  (ß  #ß "ß &×‘ & % $ #

Take a look at each of the following  statements to be sure the notation is clear:true

               ‘© ©
       

              iff  B − E ÖB× © E

                                  g Á Ög× g © Ög× g − Ög×

Notice that .  The set on the left is empty, while the set on the right has one element,g Á Ög×
namely the set .  This might be clearer with the alternate notation: .  The set on the leftg Ö× Á Ö Ö× ×
is like empty paper bag, but the set on the right is like a bag with an empty bag inside.

Examples

                  for any set            g © g g Â g g © E A

       , but g − Ög× − ÖÖg×× g Â ÖÖg××
    (so  doesn't imply E − F − G E − GÑ

            If , then E © F © G E © G
               

We define the  of a set , denoted , to be the  of .power set E ÐEÑc set of all subsets A
In symbols, .cÐEÑ œ ÖF ÀF © E×

Since  is a subset of every set, we have  for every set .  And, since  for any set ,g g − ÐEÑ E E © E Ec
we also have  for every set .E − ÐEÑ Ec

So, for example,
   =cÐÖ"ß #ß $×Ñ Ögß Ö"×ß Ö#×ß Ö$×ß Ö"ß #×ß Ö"ß $×ß Ö#ß $×ß Ö"ß #ß $××

      =cÐÖ"ß #×Ñ Ögß Ö"×ß Ö#×ß Ö"ß #××



      =cÐÖ"×Ñ Ögß Ö"××

      =cÐgÑ Ög×

These examples suggest if  has  elements, then  has 2  elements (that is,  has subsets .E 8 TÐEÑ E # Ñ8 8  

We can prove more carefully this later when we talk about “proofs by induction.”  But you should be
able now to convince yourself, intuitively, that it's true.

(If I flip a penny 2 times, how many outcomes are possible:   What ifÐLßLÑß ÐLß X Ñß ÐX ßLÑß ÐX ß X ÑÞ
I flip the penny  times?  Why is this “the same” as asking “how many subsets does a set with 8 8
elements have?”)



Paradoxes

The naive approach to sets seems to work fine until someone really starts trying to cause trouble.  The
first person to do this was Bertrand Russell who, around 1902, created Russell's Paradox:

It makes sense to ask whether a set might be one of its own members, that is, for a given set , toE
ask whether  is true or false.  For the simple sets that you first think about, this statement isE − E
clearly false.  For example, {1,2} But you hesitate for a moment ifÖ"ß #× Â Þ

    , , } } }E œ Ö g Ögß Ög×× Ögß Ög×ß Ögß Ögß Ög×× ×ß Ögß Ögß Ögß Ögß Ög×××ß ÖÖg× ××

Might b e a member of itself.  (E A little thought about counting { 's and } 's shows this couldn't be
true.)  Now suppose we had a similar looking  set of sets of sets of sets of...?   Could itinfinite
happen that ?   Whatever the answer, .E − E it makes sense to ask the question

According to the naive approach to sets we've been using, we can create down a new set  (of sets)´
by writing , so that  is the “set of all sets which are not members of´ ´œ ÖE À E Â E×
themselves.”

We can then ask, for this new set , whether  is true or false.´ ´ ´−

 If , then it must be that  satisfies the membership requirement for being in ,´ ´ ´ ´−
which
 is that .    So if , then .  That's not possible.´ ´ ´ ´ ´ ´Â − Â

 On the other hand, if , then  meets the membership requirement getting into , so´ ´ ´ ´Â
 .  That's not possible either.´ ´−

Thus, each of the only two possible assumptions about the set   (that  or ) leads to a´ ´ ´ ´ ´− Â
contradiction!   It seems like there's a contradiction built right into our set theory.

Russell's Paradox illustrates why we have to be just a little more careful:  by using the method of
abstraction to write down sets too casually, we can dig ourselves into a hole   To avoid a built-in
contradiction, we somehow don't want to be allowed to call  a set.  One way to accomplish that, in´
practice, is to insist that whenever we define a set by abstraction, we only form subsets of already
existing sets.  That is, in defining a set by abstraction, we always write  and ... , a statementÖBÀ ×B − Y
which we might also write as   ... }.)ÖB − Y À

The result is the we are defining a  of some set  that we already have at hand.  Since thesubset Y
preceding definition of  doesn't follow this form,  we will no longer be forced to think that  is a set.´ ´
This lets us avoid Russell's paradox.  Watch what happens if we try to recreate Russell's paradox now:

Suppose  is a some set and (according to our new rule about defining sets) we defineY

    .´ œ ÖE − YÀ E Â E×

The dilemma has vanished:

 If  , then and  which is impossible.´ ´ ´ ´ ´− − Y Â

 If  , then  does not meet the membership requirements for getting into which ´ ´ ´ ´Â  now
 means that    .   Since  is not possible, we merely concludeeither or´ ´ ´ ´ ´Â Y − −
  that  and we can live with that  it's not a contradiction.´ Â Y ß À



Russell's Paradox has the same “flavor” as lots of “self-referential” paradoxes in logic.  For example,
some books in the library mention themselves in the preface of a book, for example, the author
might say, “In this book, I shall ...”  Other books make no mention of themselves.  Suppose Olin
Library  wants to make a book listing all books that do not mention themselves.  Should this new book
list itself?  .  The common-sense resolution of the paradox is to replyThat is Russell's Paradox
something like  “Look, what the library  meant was that they want to make a list of all booksreally
already in their collection and which do not mention themselves— that is, in forming the new book,
one is restricted to considering examining only those books in some preexisting collection   WithYÞ
this additional qualification, the paradox doesn't come up.

In doing everyday mathematics, we usually don't have to worry about the issue of paradoxes.  Almost
always, when we form a new set, we have (at least implicitly, in the back of our minds) some larger set
Y  (a “universe”) and we are defining some subset of that universe. Therefore, indulging in a bit of
sloppiness, we may sometimes write such things as  ...  rather than the more correctÖB À ×
ÖB − Y À Y ... } simply because the set  could be supplied on demand, and the notation is simpler.

There are also other kinds of paradox that can arise from defining sets too casually, but a math major
(or even a research mathematician, in day-to-day work)isn't like to bump into them. However, one of
the reasons to develop axiomatic set theory carefully is to avoid paradoxes.

Operations on Sets

We want to be able to form new sets from old ones.  The simplest operations to do this are  andunion
intersection union.  The  of two sets  is the set consisting of all elements in .EßF E  F one or the other
The  of the two sets is the set of all elements belonging to .  More formallyintersection E  F both

   or ,E  F œ ÖB À B − E B − F×
  =  and .E  F ÖB À B − E + − F×

Note:  When we discussed the logical meaning of “or”, we said that mathematicians use “or” in an
inclusive sense.  Thus,  “  or ”  means “  or  or both.”B − E B − F B − E B − F

Examples  4.1     Ö"ß #×  Ö#ß $× œ Ö"ß #ß $× Ö"ß #×  Ö#ß $× œ Ö#×         

                 ‘   œ  œ g

The idea of the union and intersection of two sets can be illustrated schematically with “Venn
diagrams” À



       E  F E  F

Note:  For those who are being really careful, our discussion of paradoxes gives you
a right to say that the definition of union of  and    readE F  should
 
     or }Ö À B − E B − FB − \

 and then ask “What is X ?”

In practice, the sets we unite are always subsets of some larger set and we do not have
to worry.  (When we write  or , we know in our minds that    œ ÖB À B − B − ×
 ‘  ‘   ‘ © ©  œ ÖB − À B − and   so that could write more precisely that 
or .)B − ×

To cover this problem, one of the axioms in axiomatic set theory is there to guarantee
the existence of the union of any two sets. .

Of course, this subtlety is easy to fix for intersections: we could have written out the
definition more fully as  À E  F œ ÖB − E À B − F×

Here are few simple properties of unions and intersection.  They're probably already familiar to you.
Pay attention, though, to how the proofs are done.  How do we prove that two sets are equal?

Theorem    1) ,  and E  F œ F  E E  F œ F  E
  (  for unions and intersectionscommutative law Ñ

  2) , and E  ÐF  GÑ œ ÐE  FÑ  G E  ÐF  GÑ œ ÐE  FÑ  G
  (  law for unions and intersections)associative
  
  3) , and E  ÐF  GÑ œ ÐE  FÑ  ÐE  GÑ E  ÐF  GÑ œ ÐE  FÑ  ÐE  GÑ
  (  laws for unions and intersections)distributive

Proof  To prove two sets are equal we must show that they have the same elements.  We do that by
showing that if  is in the set on the left hand side (LHS) of the proposed equation, then  is also in theB B
set on the right hand side (RHS)  (thereby proving LHS RHS) and vice-versa. All parts of the©



theorem are very simple to prove.  We illustrate by proving the last equality
E  ÐF  GÑ œ ÐE  FÑ  ÐE  GÑ:

If LHS   then  or .B − œ E  ÐF  GÑ B − E B − F  G

 If then  and A , so RHSB − Eß B − E  F B −  G B − ÐE  FÑ  ÐE  GÑ œ
 If , then and Therefore  and , soB − F  G B − F B − GÞ B − E  F B − E  G
     RHSB − ÐE  FÑ  ÐE  GÑ œ

If RHS , then   B − œ ÐE  FÑ  ÐE  GÑ B − E  F B − E  Gand
Since , then  or .B − E  F B − E B − F

 If , then LHSB − E B − E  ÐF  GÑ œ
 If , then  and (since  we also have .B Â E B − F B − E  GÑ B − G
    Therefore , so LHS.    B − F  G B − E  ÐF  GÑ œ ñ

.


