
The Basics of Set Theory

Introduction

Every math major should have a basic knowledge of set theory. The purpose of this chapter is to
provide some of that basic information.

Sets provide a useful vocabulary in many situations.  They are a handy language for stating interesting
results in all areas of mathematics  for example,

   “A group is a set such that...”   or
   “A basis for the vector space  is a set  of vectors such that ...”.Z U

Set theory had its origins in work done by Georg Cantor (during the late 19 century) on a certain kindth

of infinite series called Fourier series. However sets are not just a tool: like many other mathematical
ideas, “set theory” has grown into a fruitful research area of its own.

Moreover, on the philosophical side, most mathematicians accept set theory as a foundation for
mathematics  that is, the notions of “set” and “membership in a set” can be used as the most
primitive ideas in terms of which all mathematical objects and ideas can be defined.  From this point of
view,  in mathematics (numbers, relations, functions, ...) is a set. To put it in an extremeeverything
way,  most mathematicians believe (when pressed to the bottom line) that “mathematics can be thought
of as just a part of set theory.”  As this course goes on, we'll get some idea of why this point of view is
reasonable.

So, you ask, what is a set?  There are several different ways to try to answer.  Intuitively and this is
good enough for most of our purposes  a set is a collection of objects, called its  or elements
members.  For example, we can talk about “the set of United States citizens” or “the set of all real
numbers.”  The idea seems clear enough.  However, we have not really given a satisfactory definition
of a set it seems circular (after all, what is a “collection” if not just another way of saying “set”? ).

In the beginning, writers tried to give sharp definitions for “set,” just as Euclid tried to give definitions
for such things as “straight line” ( “a line which lies evenly with the points on itself ”).  Of courseœ
Euclid's definitions really wouldn't clarify much to somebody who didn't already have ideas about
straight lines.  Similarly, the old attempts to “define” a “set” were really not very satisfying. For
example, according to Cantor,

Unter einer Menge verstehen wir jede Zusammenfassung  von bestimmtenQ
wohlunterschiedenen Objekten in unserer Anschauung oder unseres Denkens (welche die
Elemente von  genannt werden) zu einem Ganzen  Q [By a set we are to understand any
collection into a whole  of definite and separate objects (called the elements of ) of ourM Q
perception or thought.]   ( )German seems to be a good language for this kind of talk.

More compactly, Felix Hausdorff, around 1914, stated that a set is “a plurality thought of as a
unit.”

At this stage, we have several options.



i)  We can use our intuitive, informal notion of a set and go on from there, ignoring any more
subtle issues just as we might not worry about a definition for “point” and “line” in
beginning to study geometry.

ii) We can try to give a formal definition of “set” in terms of some other mathematical objects.
We would be assuming, implicitly, that these other objects are even “more fundamental” or
“clearer” for our use as the foundational objects.

iii) We can take the notions of “set” and “set membership” as “ground zero” that is, as
primitive undefined terms.  We don't even ask what sets “really are.” We just write down some
rules (axioms) about how these things we call “sets” behave and proceed from there, in
accordance with these rules, to prove new results and define new objects eventually building
up more and more of mathematics.

The  approach is sometimes called naive (or “informal”) set theory. Here, the word “naive” merelyfirst
refers to the starting point; it does not mean “simplistic” naive set theory actually can get  very
complicated.  Historically, set theory began along these lines.

The  option certainly is a logical possibility but it seems to be one that few if anysecond
mathematicians follow.  In the work  (mentioned in class), Russell andPrincipia Mathematica
Whitehead tried to use what we'd call “symbolic logic” as a foundation even more basic than set
theory.

The  option would take us into the subject called “axiomatic set theory.”  Although an enormousthird
amount of interesting and useful naive set theory exists, almost all research work in set theory
nowadays requires using this axiomatic approach (as well as a healthy dose of mathematical logic).

As a practical matter, we are going to take the naive approach.  For one thing, the axiomatic approach
is not worth doing if it isn't done carefully, and that is a whole course in itself.  Moreover, axiomatic
set theory isn't much fun unless you have learned enough naive set theory to appreciate why an
axiomatic approach would be important. It's more interesting to try to make things absolutely precise
after you have a good overview.  (People were aware of a lot about geometry before Euclid did his
axiomatization.)

As we go along, however, we will also make some side comments in the lectures and notes about the
axiomatic approach just to provide some perspective.  It is the axiomatic approach, when very carefully
worked out, that actually provides a foundation for mathematic in set theory.  In this course, we at least
want some glimpses of how the foundation is laid.

.



Preliminaries and Notation

Informal Definition  A  is a collection of things called its  (or ).  If  is a set andset elements members E
B B − EÞ B E B is an element of , we write   If  is not a member of , we write .A AÂ

One way to write a small set is to list its members inside curly braces:    is the set havingE œ Ö"ß #ß $×
the numbers  as its members."ß #ß $

As the informal definition implies, we may also use the word “collection” (or other similar words such
as “family” ) in place of “set.”  Sometimes this is just for variety; sometimes it serves informally to
emphasize some point for example, we might refer to a set whose elements are other sets as a
“collection of sets” or a “family of sets,” rather than a “set of sets.”

In the same vein, using a  “ ” for a set but a  case letter like “ ” for a member ofcapital lowerE B
E is just a notational device to help us (psychologically) keep track of things.  We might also
use other letter styles to help. For example if , and  are sets, we might use a  letterEßF G script
like  to denote a family (set) of sets   and lower case letters like  forU UÀ œ ÖEßFßG× Bß Cß D
the members of the set .E

However, there's no logical necessity controlling the notation.  If we want to, we can use (say)
only lower case letters for everything.  We could, for example, have  .  It might thatsets Bß Cß D
A B A − BÞ is an element of , that is,   We might then form a new set
@ œ ÖÖBß C×ß ÖBß D×ß ÖCß D××  @ so that  is a set of sets of sets.  It's important to be able to
think at this level of abstraction sometimes, but you can see how the use of different cases and
fonts can be a useful .  You probably also agree that referring to  as a “family ofdevice @
collections of sets” rather than a “set of sets of sets” helps keep things straight even though
the phrases have identical meanings. .

We can describe sets in a couple of different ways:

By  the elements most useful when the set is a small finite set or an infinite set whoselisting 
elements can be referred to using  “...” 

For example,

 E œ Ö"ß #×
      the set of  œ Ö"ß #ß $ß ÞÞÞ× natural numbers

Some people include “ “ in what they call the set of natural numbers.  Whether!
 you do or don't is really just a convention about how you name things. When you
 are reading any particular math book, you always have to be sure how the author
 is using certain symbols because there are small variations like this.

          the set of = œ Ö!ß "ß #ß ÞÞÞ× whole numbers

 ,    the set of ™ œ Ö! „ "ß „ #ß ÞÞÞ× integers

By , that is, by using some property to describe exactly what elements are in the set.abstraction
We do this by writing something like has a certain property .ÖB À B ×



For example,

  is a real number}    the set of all  numbers‘ œ ÖB À B real
 :  and  0}   the set of  numbers ™ ™œ Ö − ß ; − Áp

q p q rational

  and }     the set of  numbers ‘ œ Ö − ÂB À B B irrational

Following this procedure, we might write down things like

   and  and  and .Ö B œ  "× ÖB À \ Á B×B À B − B −‘ ‘#

Of course, no real number is actually a member of either set both sets are .   The empty set is empty
usually denoted by the symbol  (which, by the way, is a Danish letter, not a Greek phi (  or ) ).  It isg F 9
occasionally also denoted by  . The empty set is also known by the more British name “null set.”Ö ×

It might seem odd to allow an empty set and even give it with a special symbol, but the alternative
would be to say that some expressions like  and = 1 , which  perfectly reasonableÖ  ×B À B − B‘ # look
are, in fact, not sets at all.  Even worse, if we did not allow the possibility of an empty set, then we
might be not be sure whether some things we write down are sets because we're uncertain whether
they contain any elements.  For example,  do you know whether
   
      and , where and  are irrationalÖB À B − B œ × α α ""

actually contains any members ?

Of course, our informal sets may contain any objects as elements.  But in mathematics we are not
likely to be interested in sets of aardvarks.  We will only use sets that contain various mathematical
objects.  For example, a set of functions

   is a continuous real-valued function defined on the closed interval Ö Ò+ß ,Ó ×0 À 0

or a set of sets such as

  1 , 1,2    or ,   or , .Ö Ö × Ö × × Ög× Ög Ög××

Of course, if  “everything in mathematics is a set,” then (at the bottom line) all sets in mathematics are
sets whose members are other sets (because what else is there to put in a set?).

We say that , written  provided each element of  is also a member of .  TheA Bis a subset of A B , A© F
more formal definition is:

Definition    if  (  (E © F aBÑ B − E Ê B − FÑ
ÐRemember: it's customary of write “if” in a definition, but in a statement which is a “announced” to
be a definition, the “if ” really means “iff.”Ñ

We say that ,  when  and  have precisely the same elements.  The moretwo sets are equal E œ Fß E F
formal definition is:

Definition  E œ F ÐE © F • F © EÑ if  



Clearly, this is equivalent to saying:   ( )ÐaBÑ B − E Í B − F

If but  we say is a  subset of .E © F E Á F E Fproper

For example,  (order doesn't matter in writing down the elements in a set)Ö"ß #× œ Ö#ß "×
  ÖBß C× œ ÖCß B×
  ÖBß B× œ ÖB×

Two sets whose descriptions appear quite different may turn to be equal when you look more carefullyÞ
For example, you can easily check that

  and  ÖB À B − B  &B  #*B  "!*B  )B  "%! œ !× œ Ö  (ß  #ß "ß &×‘ & % $ #

Take a look at each of the following  statements to be sure the notation is clear:true

    ‘© ©
       

   iff  B − E ÖB× © E

    g Á Ög× g © Ög× g − Ög×

Notice that .  The set on the left is empty, while the set on the right has one element,g Á Ög×
namely the set .  This might be clearer with the alternate notation: .  The set on the leftg Ö× Á Ö Ö× ×
is like empty paper bag, but the set on the right is like a bag with an empty bag inside.

Examples

        for any set g © g g Â g g © E A

   , but      (g − Ög× − ÖÖg×× g Â ÖÖg×× Ñso  doesn't imply E − F − G E − G

  If , then E © F © G E © G
               

We define the  of a set , denoted , to be the  of .power set E ÐEÑc set of all subsets A
In symbols, .cÐEÑ œ ÖF ÀF © E×

Since  and , we have  and  for any set .g © E E © E g − ÐEÑ E − ÐEÑ Ec c

For example,
   =cÐÖ"ß #ß $×Ñ Ögß Ö"×ß Ö#×ß Ö$×ß Ö"ß #×ß Ö"ß $×ß Ö#ß $×ß Ö"ß #ß $××

      =cÐÖ"ß #×Ñ Ögß Ö"×ß Ö#×ß Ö"ß #××



      =cÐÖ"×Ñ Ögß Ö"××

      =cÐgÑ Ög×

These examples suggest if  has  elements, then  has 2  elements (that is,  has subsets .E 8 TÐEÑ E # Ñ8 8  

We can prove more carefully this later when we talk about “proofs by induction.”  But you should be
able now to convince yourself, intuitively, that it's true.

(If I flip a penny 2 times, the possible outcomes are:    What if I flipÐLßLÑß ÐLß X Ñß ÐX ßLÑß ÐX ß X ÑÞ
the penny  times?  Why is this “the same” as asking “how many subsets does a set with  elements8 8
have?”)



Paradoxes

The naive approach to sets seems to work fine until someone really starts trying to cause trouble.  The
first person to do this was Bertrand Russell who, around 1902, created Russell's Paradox.

It makes sense to ask whether a set might be one of its own members, that is, for a given set , toE
ask whether  is true or false.  For the simple sets that you first think about, this statement isE − E
clearly false.  For example, But you hesitate for a moment ifÖ"ß #× Â Ö"ß #×Þ

    , , } } }E œ Ö g Ögß Ög×× Ögß Ög×ß Ögß Ögß Ög×× ×ß Ögß Ögß Ögß Ögß Ög×××ß ÖÖg× ××

Is  a member of itself?  ( .)E A little thought about counting 's and 's shows this couldn't be trueÖ ×

But suppose we had a similar looking  set of sets of sets of sets of...?   Could it happen thatinfinite
E − E?   Whatever the answer, .it makes sense to ask the question

According to the naive approach to sets we've been using, we can create a new set  (of sets) by´
writing , so that  is the “set of all sets which are not members of themselves.”´ ´œ ÖE À E Â E×

We can then ask, for this new set , whether  is true or false.´ ´ ´−

 If , then it must be that  satisfies the membership requirement for being in ,´ ´ ´ ´−
which
 is that .    So if , then , a contradiction.´ ´ ´ ´ ´ ´Â − Â

 On the other hand, if , then  meets the membership requirement getting into , so´ ´ ´ ´Â
 , a contradiction again.´ ´−

Thus, each of the only two possible assumptions about the set   (that  or ) leads to a´ ´ ´ ´ ´− Â
contradiction!   It seems like there's a contradiction built right into our set theory.

Russell's Paradox illustrates why we need to be a little more careful: by using the method of abstraction
to write down sets too casually, we can dig ourselves into a hole.  To avoid a built-in contradiction, we
somehow don't want to be allowed to call  a set.ÖE À E Â E×

Roughly, the paradox happens because we imagine gathering together into   the sets  that are not´ all E
members of themselves, without specifying a  to which  refers. We can avoid the paradoxuniverse all
simply by insisting that  “thewhenever we define a set by abstraction, it must be a subset of some set Ð
universe”  .  Therefore in defining a set by abstraction, we always writeÑ that we already have
ÖB À × ÖB − Y À ×B − Y  and ... .  We might abbreviate this as:    ... .

The result is the we are defining a  of some set  that we already have.  Since the precedingsubset Y
definition of  doesn't follow this rule for set formation,  we will no longer be forced to think that we´
have defined a .  This lets us avoid Russell's paradox.  In fact, watch what happens if we try toset
recreate Russell's paradox now:

Suppose  is a some set and (according to our new rule about defining sets) we define a setY
´ œ ÖE − YÀ E Â E×.   Now there is no more paradox:

 If  , then and  which is impossible.´ ´ ´ ´ ´− − Y Â

 If  , then  does not meet the membership requirements for getting into which´ ´ ´ ´Â 



 means  that    .   Since  is not possible, we merely concludenow either or´ ´ ´ ´ ´Â Y − −
 that  and that's  impossible..´ Â Y ß not

Russell's Paradox has the same flavor as a lot of “self-referential” paradoxes in logic.  For example,
some books in Olin Library mention themselves for example, in the preface of a book the author
might say, “In this book, I shall ... .”  Other books make no mention of themselves.  Suppose Olin
Library  wants to make a book listing all books that do not mention themselves.  Should this new book
list itself?  .  The commonsense resolution of the paradox is to reply:   “Look,That is Russell's Paradox
what the library  meant was that it wants to make a list of all books   which doreally in its collection ÐY Ñ
not mention themselves— that is, in forming the new book, one is restricted to considering examining
only those books in some preexisting set  of books.  With this additional qualification, the paradoxY
doesn't come up.

In doing everyday mathematics, we usually don't have to worry about the issue of paradoxes.  Almost
always, when we form a new set, we have (at least implicitly, in the back of our minds) some larger set
Y  (a “universe”) and we are defining some subset of that universe. Therefore as a practical matter and
indulging in a bit of sloppiness, we may sometimes write such things as  ...  rather than the moreÖB À ×
correct  ...   We do this to simplify notation, and we allow ourselves this latitude simply weÖB − Y À ×Þ
could name what the set  is intended to be if we were asked.Y

There are also other kinds of paradoxes that can arise from defining sets too casually, but a math major
(or even a research mathematician, in day-to-day work) isn't like to bump into them. However, one of
the reasons to develop axiomatic set theory carefully is to avoid paradoxes.

Operations on Sets

We want to be able to form new sets from old ones.  The simplest operations to do this are  andunion
intersection union.  The  of two sets  is the set consisting of all elements in .EßF E ∪ F one or the other
The  of the two sets is the set of all elements belonging to .  More formallyintersection E ∩ F both

   or ,E ∪ F œ ÖB À B − E B − F×
  =  and .E ∩ F ÖB À B − E + − F×

Note:  When we discussed the logical meaning of “or”, we said that mathematicians use “or” in an
inclusive sense.  Thus,  “  or ”  means “  or  or both.”B − E B − F B − E B − F

Examples       Ö"ß #× ∪ Ö#ß $× œ Ö"ß #ß $× Ö"ß #× ∩ Ö#ß $× œ Ö#×         

                 ‘  ∪ œ ∩ œ g



The idea of the union and intersection of two sets can be illustrated schematically with :Venn diagrams

       E ∪ F E ∩ F

Note for those who are being careful:   our discussion of paradoxes gives you a right
to say that the definition of union of  and    readE F  should
 
     or }Ö À B − E B − FB − Y

 and then ask  “Given two arbitrary sets  and , what is in mind when definingÀ E F Y
E ∪ F ?”

In practice, the sets we unite are always subsets of some larger set and we can name
the intended  if asked.  For example, when we write  or ,Y ∪ œ ÖB À B − B − ×   
we know in our minds that  and  , so we could have written more ‘  ‘© ©
precisely that  or .)  ‘  ∪ œ ÖB − À B − B − ×

But how could we say what  should be for two completely arbitrary sets  and ?Y E F
Actually, we can't, and to deal with this problem axiomatic set theory has one axiom
that simply states, by fiat, that the union of any two sets exists. , the axiom saysIn effect
that for the special case of , it is allowed to writeE ∪ F
E ∪ F œ ÖB À B − E ” B − F× Y  specifying the set .without

Of course, there is no corresponding difficulty in defining intersections: we could have
written out the definition more fully as  À E ∩ F œ ÖB − E À B − F×

Here are few simple properties of unions and intersection.  They're probably already familiar to you.
Pay attention, though, to how the proofs are done.  How do we prove that two sets are equal?

Theorem    1) ,  and E ∪ F œ F ∪ E E ∩ F œ F ∩ E
  (  for unions and intersectionscommutative law Ñ

  2) , and E ∪ ÐF ∪ GÑ œ ÐE ∪ FÑ ∪ G E ∩ ÐF ∩ GÑ œ ÐE ∩ FÑ ∩ G
  (  law for unions and intersections)associative
  
  3) , and E ∩ ÐF ∪ GÑ œ ÐE ∩ FÑ ∪ ÐE ∩ GÑ E ∪ ÐF ∩ GÑ œ ÐE ∪ FÑ ∩ ÐE ∪ GÑ
  (  laws for unions and intersections)distributive



Proof  To prove two sets are equal that each is a subset of the other that is, that they have exactly the
same elements. We do that by showing that if  is in the set on the left hand side (LHS) of theB
proposed equation, then  is also in the set on the right hand side (RHS) thereby proving LHSB 
© RHS and vice-versa. All parts of the theorem are very simple to prove.  We illustrate by proving

the last equality :E ∪ ÐF ∩ GÑ œ ÐE ∪ FÑ ∩ ÐE ∪ GÑ

If LHS   then  or .B − œ E ∪ ÐF ∩ GÑ B − E B − F ∩ G

 If then  and A , so RHSB − Eß B − E ∪ F B − ∪ G B − ÐE ∪ FÑ ∩ ÐE ∪ GÑ œ
 If , then and Therefore  and , soB − F ∩ G B − F B − GÞ B − E ∪ F B − E ∪ G
     RHSB − ÐE ∪ FÑ ∩ ÐE ∪ GÑ œ

If RHS , then   B − œ ÐE ∪ FÑ ∩ ÐE ∪ GÑ B − E ∪ F B − E ∪ Gand
Since , then  or .B − E ∪ F B − E B − F

 If , then LHSB − E B − E ∪ ÐF ∩ GÑ œ
 If , then  and (since  we also have .B Â E B − F B − E ∪ GÑ B − G
 Therefore , so LHS.    B − F ∩ G B − E ∪ ÐF ∩ GÑ œ ñ

.



Another important operation on sets is “taking complements.”

Definition     If  and  are sets, then  is called the  .E F EF œ ÖB − E À B Â F× complement of inF E
If it is clearly understood that we are taking the complement of  in some particular set , then notF E

bother to write the “ ” and simply write  or  in place of For example, in a discussionE F F EFÞ
µ-

where  is the universal set and , our textbook writes   to mean the same thing as .Y F © Y F Y F
µ

A Venn diagram schematically shows EF À

 
Examples   the set of irrational numbers .‘   œ Ð Ñ
(There is no standard mathematical name for the set of irrational numbers.  Personally, I like using ,
because it leads to the nice-looking equation   ‘∪ œ Þ)

        the set of all natural numbers that are  Ö8 − À $l8× œ Ö"ß #ß %ß &ß (ß )ß "!ß ""ß ÞÞÞ× œ
not divisible by .$

There are a few other important properties of unions, intersection and complements.  But before we
mention them, we want to generalize so that we will be able to take the union or intersection of more
than just two sets . even infinitely many

Definition  If  is any collection of sets, then  for some set T T T œ ÖD À D − E E − ×

In words,   the set of “all members of members of .”T Tœ

 If , , where ,T œ ÖE ßE E × E œ Ö"ß #×ß E œ Ö#ß $ß %×ß E œ Ö$ß (×" # $ " # $

 then  , which is the same as T œ Ö"ß #ß $ß %ß (× ÐE ∪ E Ñ ∪ E œ E ∪ ÐE ∪ E Ñ" # $ " # $



As we said earlier, the use of different letter styles is just for convenience. In the preceding example,
we could have used all lower case letters, writing

 Let  where and A œ ÖBß Cß D× B œ Ö"ß #×ß C œ Ö#ß $ß %× D œ Ö$ß (×Þ
 Then     or  or A œ Ö? À ? − B ? − C ? − D× œ
       or  or œ Ö? À ? − Ö"ß #× ? − Ö#ß $ß %× ? − Ö$ß (×× œ Ö"ß #ß $ß %ß (×Þ

Similarly, we can define the intersection of any collection of sets.

Definition  If  is any collection of sets, then    for  T T T œ ÖD À D − E E − ×every

In  words,   is the set of “all elements that are in every member of  .”T T

 For the collection defined above,  T œ A œ g

Sometimes it's convenient to attach indices  “labels”  to the sets in a collection of sets.  To do this,Ð œ Ñ
we use some set  an   ( “set of labels”)? indexing set œ

Definition  Suppose  sets  are given, one for each . Then we say that the collectionW −α α ?
T α ? ? Tœ ÖW À − × ÖW ×α α α ? is  by .  In that case, we might also write  more informally as indexed −

or even merely as  if the indexing set  is clearly understood by everyone.ÖW ×α ?

When we have an indexed collection such as , then we write unions and intersectionsT α ?œ ÖW À − ×α

in a variety of ways.  For example,

        T α ? α ?œ ÖW À − × œ W œ ÖB À Ðb − Ñ B − W ×α α αα ?−

       T α ? α ?œ ÖW À − × œ W œ ÖB À Ða − Ñ B − W ×α α αα ?−

When the particular indexing set  is understood or irrelevant, we might even skip writing “ ”? α ?−
and just write  or . 

α αα αW W

If the indexing set is ,  then  we might also write T œ ÖW ß W ß ÞÞÞß W ß ÞÞÞ×" # 8

        T œ W œ W œ ÖB À Ðb8 − Ñ B − W ×8− 8œ"8 8 8
∞



        T œ W œ W œ ÖB À Ða8 − Ñ B − W ×8− 8œ"8 8 8
∞



Examples     (Look at each one carefully to be sure you understand the notation.  A few of them may
take a little thought to check the final result.)

     1) For each  let  the   of real numbers.  ThenB − Ò!ß∞Ñß M œ Ò!ß BÓB interval
  is an  collection of closed intervals, one for eachT œ ÖM À B − Ò!ß∞Ñ×B infinite
  Here, the indexing set  is .B   !Þ Ò!ß∞Ñ?

         T œ M œ Ò!ß∞Ñ ÐB ! B why?Ñ
        T œ M œ Ö!× Ð ÑB  B0 why?



     2) Let  Then  is an infinite collectionF œ Ò!ß "  Ó © Þ œ ÖF ßF ß ÞÞÞß F ß ÞÞÞ×8 " # 8
"
8 ‘ ´

  of  closed intervals on the real line, indexed by Þ

        T œ F œ F œ Ò!ß #Ó Ð Ñ8− 8œ"8 8
∞

 why?
       T œ F œ F œ Ò!ß "Ó Ð Ñ8− 8œ"8 8

∞
 why?

    

     3) If  is the closed interval , 1  on the real line, thenE  8  1 1
 n n

      ÖE À 8 − × œ E œ Ò  "ß "Ñ Ð Ñ8 88œ"
∞ why only a “half-closed” interval?

    ÖE À 8 − × œ E œ Ö!×8 88œ"
∞

     4) If  then   and  F œ Ò8ß∞Ñ © ß F œ Ò"ß∞Ñ F œ g8 8 8
8œ" 8œ"

∞ ∞

‘  
     5) Let  be the power set of Then  and c c cÐEÑ EÞ ÐEÑ œ E ÐEÑ œ gÞ 

It's possible to  properties about set operations (unions, intersections and complements) togeneralize
operations with infinite families of sets.  For example, we said earlier that unions are associative
ÐE ∪ FÑ ∪ G œ E ∪ ÐF ∪ GÑ.  This can be generalized as follows:

Suppose we have three indexed families   and  and .  ThenÖE À − W× ÖE À − X× ÖE À − [×α α αα α α

  Ð E Ñ ∪ Ð E Ñ œ Ð E Ñ ∪ Ð E Ñ   
α α αα α α α−W∪X −[ −W −X∪[

Example   A relatively simple fact to prove is:

    ÐG ∩ HÑ ∪ ÐI ∩ JÑ œ ÐG ∪ IÑ ∩ ÐGYJÑ ∩ ÐH ∪ IÑ ∩ ÐH ∪ JÑ Ð‡Ñ

(Try it!)

     A  of the same result for indexed families of sets is the following:generalized version

   Ð  
α α " α "" α "−E −F −Eß −FW Ñ ∪ Ð W Ñ œ ÐW ∪ W Ñ Ð‡‡Ñ    

Be sure you see that if   is true, then  must automatically be true.Ð‡‡Ñ Ð‡Ñ

Here is a proof of the more general result   As usual, we argue that the left-hand side (LHS) is aÐ‡‡ÑÞ
subset of the right-hand side (RHS) in the proposed equation, and then make the argument in the
opposite direction.
 If LHS, then  or  .B − B − W B − W α α ""−E −F

 If ,  then B − W Ða − EÑ B − W Þ
α α α−E α

 Therefore B  , so RHS.Ða − EÑÐa − Ñ B − W ∪ W B − ÐW ∪ W Ñ œα " α " α "α "


−Eß −F



 If , then  B − W Ða − FÑ B − W Þ
" " "−F "

 Therefore B   so RHS.Ða − EÑÐa − Ñ B − W ∪ W B − ÐW ∪ W Ñ œα " α " α "α "


−Eß −F

 To prove the other “half”, that RHS LHS, we use an indirect proof (contraposition)©

If LHS ( , then   .  ThenB Â œ W Ñ ∪ Ð W Ñ B Â W B Â W   
α αα " α "" "−E −E−F −Fand

Ðb − EÑ B Â W B Â W Ðb − FÑ B Â W B Â W Þα "α α ", say .  Similarly,  , say 
! !"

Therefore , so RHS.B Â W ∪ W B Â ÐW ∪ W Ñ œα " α "α "! !


−Eß −F

 Therefore RHS LHS.   œ ñ

The example illustrates a choice that sometimes has to be made in writing mathematics: do you prove
the “most general” version of something that you possibly can (like (**)) ?  or do you prove something
simpler and easier to understand (like (*)) ?

The answer depends on your purpose.  In writing a lower level mathematics text, one usually states a
theorem that is no more general that what's going to be needed in that particular course so that it's
easier to understand.  In doing research, a mathematician likes to prove as general a result as s/he
possibly can.  After all, who knows when, in the future, that extra generality might turn out to be
helpful?  In that setting, the attitude is never “discard” any knowledge.

The next theorem connects complements with unions and intersections.

Theorem (DeMorgan's Laws)   Suppose  is a set and that  is an indexed collection ofE ÖW À − F×" "
sets.   Then

   1) ,    andE ÖW À − F× œ ÖE  W À − F× " "" "
   2) E ÖW À − F× œ ÖE  W À − F× " "" "

In words, 1) says that “the complement of a union is the intersection of the complements” and
    2) says that “the complement of an intersection is the union of the complements.”

In the simplest cases:  what does the theorem say about  and about ?  In theE ÐF ∪ GÑ E  ÐF ∩ GÑ
situation where we are taking all complements within a given universe , what does the theorem sayY
about  and ?ÐF ∪ GÑ ÐF ∩ GÑ- -

Proof   1) We have to show that LHS RHS.  We could do the proof in two parts (as in the lastœ
theorem): show first that LHS RHS, and then that RHS LHS.  But sometimes we can shorten the© ©
write-up of this kind of “iff” proof by laying out an argument where every new statement is logically
equivalent to the preceding one.  In other words, each step in the argument is “reversible” (iff). Below,
you can read the argument  “from top to bottom” to prove LHS RHS and read it “from bottom to©
top” to prove RHS LHS.©

B − œ E  ÖW À − F× Í B − E B Â ÖW À − F×LHS  and  " "" "
      and  for every index Í B − E B Â W" "
       for every index Í B − E  W" "
      RHS.Í B − ÖE  W À − F× œ " "

The proof of part 2) of DeMorgan's Laws is similar and is left as an exercise.  ñ



Why are 1) and 2) referred to as “DeMorgan's Laws” a name we already used in discussions of
logic?  In fact DeMorgan's Laws (for sets) are really just a rephrasing into set theory of DeMorgan's
Laws (in logic).

Example  Suppose  and  are open sentences, and that some universe  is given.TÐBÑ UÐBÑ Y

Let ) is true  and  is true .E œ ÖB − Y À T ÐB × F œ ÖB − Y À UÐBÑ ×

Then    is true  andE ∪ F œ ÖB − Y À T ÐBÑ ” UÐBÑ ×
   is true , andE ∩ F œ ÖB − Y À T ÐBÑ • UÐBÑ ×

DeMorgan's Laws (as stated above, for sets) give us that

       that isY  ÐE ∪ FÑ œ ÐY  EÑ ∩ ÐY  FÑ
      Å Å
  the set of 's   the set of 'sÒ B Ò B
              for which                           for which  
      µ ÐTÐBÑ ” UÐBÑÑ µ TÐBÑ • µ UÐBÑ
              is true      is trueÓ Ó


