Sums of Powers of Natural Numbers

We'll use the symbol S_{k} for the sum of the $k^{t h}$ powers of the first n natural numbers. In other words,

$$
S_{k}=1^{k}+2^{k}+\ldots+n^{k}
$$

Of course, this is a "formula" for S_{k}, but it doesn't help you compute - it doesn't tell you how to find the exact value, say, of $S_{3}=1^{3}+2^{3}+\ldots+15^{3}$. We'd like to get what's called a closed formula for S_{k}, that is, one without the annoying " ..." in it.

For $S_{0}=1^{0}+2^{0}+\ldots+n^{0}$, this is easy: since there are n terms, each equal to 1 , so we get

$$
S_{0}=1+1+\ldots+1=1 \cdot n=n
$$

For S_{1}, it's already harder. Here's a slick way of finding a closed formula for S_{1} :
Write down S_{1} twice, in two different orders:

$$
\begin{array}{lllcccccc}
S_{1}= & 1 & + & 2 & + & 3 & +\ldots & +(n-1) & + \\
S_{1} & n \text {, and } \\
S_{1} & n & + & (n-1)+ & (n-2)+\ldots & + & 2 & + & 1
\end{array} \text { and then add to get: }
$$

Since there are n terms on the right, each equal to $(n+1)$, we get

$$
\begin{aligned}
& 2 S_{1}=n(n+1), \text { so } \\
& S_{1}=\frac{n(n+1)}{2}
\end{aligned}
$$

This is a "usable" closed formula: for example, $1+2+3+\ldots+15=\frac{15(16)}{2}=120$.
The argument above shows how somebody might actually "discover" the formula. Of course, given the proposed formula, we can also prove it by induction, just as we did in the lecture.

There are lots of such formulas. They often come up in Calculus I when integrals are introduced: they are useful for evaluating integrals like $\int_{0}^{1} x d x, \int_{0}^{1} x^{2} d x, \ldots$ directly from the definition of the integral (without using the Fundamental Theorem of Calculus. (For example, see pp. 357-358 in our current calculus text: Stewart, "Calculus:Concepts and Contexts" (3rd ed.)) Here's a list of some of those formulas. You should try proving one or more of them using induction.

$$
\begin{aligned}
& S_{0}=1^{0}+2^{0}+\ldots+n^{0}=n \\
& S_{1}=1^{1}+2^{1}+\ldots+n^{1}=\frac{n(n+1)}{2} \\
& S_{2}=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& S_{3}=\left[\frac{n(n+1)}{2}\right]^{2} \quad\left(\text { Curious observation: } S_{3}=\left[S_{1}\right]^{2}\right)
\end{aligned}
$$

Where do these formulas come from? Each one can be proved by induction if you are given the formula. But what, for example is S_{4} ? Did somebody find the S_{3} formula by looking at lots of values of n and then guessing a formula that would fit the answers?

There is a way to get a formula for each S_{k} once you know the previous ones. In other words, there's a method for finding an "inductive" ("recursive") formula for each S_{k} in terms of the previous formulas S_{0}, S_{1}, \ldots, S_{k-1}. Here's how it works (an idea I first read in George Polya's book, Mathematical Discovery):

We can see directly that $S_{0}=n$. How can we use S_{0} to find S_{1} ?
For any positive integer j, we know that $(j+1)^{2}-j^{2}=2 j+1$. We write this down for each value $j=1,2, \ldots, n$

$$
\begin{array}{ll}
2^{2}-1^{2} & =2(1)+1 \\
3^{2}-2^{2} & =2(2)+1 \\
4^{2}-3^{2} & =2(3)+1
\end{array}
$$

$(n+1)^{2}-n^{2}=2(n)+1 \quad$ Adding up the columns on both sides (with lots of cancellations on the left-hand side) gives

$$
\begin{aligned}
& (n+1)^{2}-1 \quad=2(1+2+\ldots+n)+n \\
& \quad=2 S_{1}+n \text { so } \\
& n^{2}+2 n+1-1=2 S_{1}+n \text { so } \\
& n^{2}+n=2 S_{1} \text { so } \\
& \frac{n^{2}+n}{2}=\frac{n(n+1)}{2}=S_{1} .
\end{aligned}
$$

So now we know formulas for S_{0} and S_{1}. How can we get a formula for S_{2} ? It's the same idea, but a little more algebra.

For any j we know that $(j+1)^{3}-j^{3}=3 j^{2}+3 j+1$. We write this down for each $j=1,2, \ldots, n$.

$$
\begin{array}{ll}
2^{3}-1^{3} & =3\left(1^{2}\right)+3(1)+1 \\
3^{3}-2^{3} & =3\left(2^{2}\right)+3(2)+1 \\
4^{3}-3^{3} & =3\left(3^{2}\right)+3(3)+1
\end{array}
$$

...
$(n+1)^{3}-n^{3}=3\left(n^{2}\right)+3(n)+1$. Adding up the columns on both sides gives

$$
\begin{aligned}
& (n+1)^{3}-1=3\left(1^{2}+2^{2}+\ldots+n^{2}\right)+3(1+2+\ldots+n)+(1+1+. .+1) \\
& \begin{array}{lllll}
=3 & S_{2} & +3 & S_{1} & +\quad S_{0},
\end{array} \\
& n^{3}+3 n^{2}+3 n+1-1=3 S_{2}+3 S_{1}+S_{0} \text {. Then we solve to get } S_{2} \text {. } \\
& n^{3}+3 n^{2}+3 n-3 S_{1}-S_{0}=3 S_{2} \text {, so } \\
& S_{2}=\frac{n^{3}+3 n^{2}+3 n-3 S_{1}-S_{0}}{3} \text {. This is a recursive formula for } S_{2} \text {. }
\end{aligned}
$$

If we like, since we know formulas for S_{1} and S_{0}, we can substitute, simplify, and get
$S_{2}=\frac{n^{3}+3 n^{2}+3 n-3\left[\frac{n(n+1)}{2}\right]-n}{3}=$

$$
\begin{aligned}
& =\frac{\frac{2 n^{3}+6 n^{2}+6 n-3 n^{2}-3 n-2 n}{2}}{3} \\
& =\frac{2 n^{3}+3 n^{2}+n}{6}=\ldots=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

See if you can now derive the formula for S_{3} (given above), making use of the algebraic identity

$$
(j+1)^{4}-j^{4}=4 j^{3}+6 j^{2}+4 j+1 .
$$

Optional Material

If you know the binomial formula (from high school) and can therefore expand $(j+1)^{k}$, then the same idea works for any natural number k. But the bigger k is, the more lagebra is involved. An outline goes like this.

The formula for the "binomial coefficients" : $\left.\quad\binom{k}{l}=\frac{k!}{l!(k-l)!}\right)$
Suppose we have figured out formulas for $S_{0}, S_{1}, S_{2}, \ldots, S_{k-1}$. We know (from the binomial theorem) that for any j,

$$
(j+1)^{k+1}-j^{k+1}=\binom{k+1}{1} j^{k}+\binom{k+1}{2} j^{k-1}+\binom{k+1}{3} j^{k-2}+\ldots+1
$$

Write this out for each value $j=1,2, \ldots n$.

$$
\begin{align*}
& 2^{k+1} \quad-1^{k+1} \quad=\binom{k+1}{1} 1^{k}+\binom{k+1}{2} 1^{k-1}+\binom{k+1}{3} 1^{k-2} \ldots+1 \\
& 3^{k+1}-2^{k+1}=\binom{k+1}{1} 2^{k}+\binom{k+1}{2} 2^{k-1}+\binom{k+1}{3} 2^{k-2} \ldots+1 \\
& (n+1)^{k+1}-n^{k+1} \quad=\binom{k+1}{1} n^{k}+\binom{k+1}{2} n^{k-1}+\binom{k+1}{3} n^{k-2} \ldots+1 \text {. Add the columns: } \\
& (n+1)^{k+1}-1 \\
& =\binom{k+1}{1}\left(1^{k}+2^{k}+\ldots+n^{k}\right)+\binom{k+1}{2}\left(1^{k-1}+2^{k-1}+\ldots+n^{k-1}\right) \\
& +\binom{k+1}{3}\left(1^{k-2}+2^{k-2}+\ldots+n^{k-1}\right) \quad \ldots+n \\
& =\binom{k+1}{1} S_{k}+\binom{k+1}{2} S_{k-1}+\binom{k+1}{3} S_{k-2}+\ldots+S_{0} .
\end{align*}
$$

Then we solve for what we want:

$$
\begin{aligned}
S_{k} & =\left[(n+1)^{k+1}-1-\binom{k+1}{2} S_{k-1}-\binom{k+1}{3} S_{k-2}-\ldots-S_{0}\right] /\binom{k+1}{1} \\
& =\left[(n+1)^{k+1}-1-\binom{k+1}{2} S_{k-1}-\left(\begin{array}{c}
\\
k+1 \\
3
\end{array}\right) S_{k-2}-\ldots-S_{0}\right] /(k+1)
\end{aligned}
$$

We are assuming that we already have formulas for $S_{k-1}, S_{k-2}, \ldots S_{1}, S_{0}$ - which we then substitute into this formula to get one closed, if complicated, formula for S_{k} in terms of n. Try it to find a formula for

$$
S_{4}=1^{4}+2^{4}+\ldots+n^{4}=\ldots
$$

