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We have a good informal picture about how the system of whole numbers works.  By the
whole number  we mean to   itssystem the set together with= œ Ö!ß "ß #ß ÞÞÞ ×,  rules for
arithmetic and for handling inequalities (for example, if  and , then+ß ,ß - − +  ,=
+  -  ,  -ÑÞ   Informally, we know a multitude of facts about behavior involving
whole numbers. ,  and . We also know how induction works. ß † œ ß  ß Ÿ

Ultimately, we want to show how the whole number system can be described in terms of
our foundation, set theory.  We want to construct a system consisting of sets, ways to
combine them  and ways to compare them so that the system “acts justÐ  ß † Ñ Ð  ß Ÿ Ñ
like” the whole number system.  As we have said several times, mathematicians don't
care about what the whole numbers “really are.”  If we can use set theory to build a
system that “acts just like ”, then all mathematicians can agree to treat that system as .= =

More carefully, what do we need to do?  When have we got a system “that acts just like
=”?   There are so many facts we know about the whole number system that we should
build into this system of sets.   There may even be about facts about  that we don't know=
but that ought to be included.  Our job seems like a hopeless task.

To make things more manageable, it would be very helpful if we had a short list of  “the
crucial properties” of a list  we can prove that the other important= from which
properties of  must also inevitably be true. Then, if we can build a system of sets which=
has all “the crucial properties” of ,  then our new system will include the other=
important properties of   automatically.=

Fortunately, there is just such a short list  axioms developed by the mathematician
Giuseppe Peano in 1889.  The latter part of the 19  century, and the beginning of the20 ,th th

were an “age of rigor” for mathematics a period when firm foundations formathematics
were being established.  By then, for example, calculus had been around for a couple of
centuries and seemed to work well at least in skilled and sensitive hands but it was 
clear that there was a lot of vagueness about why it all worked.  Part of the problem had
to do with not having firm foundations for the number systems (particularly ).‘

We are going to look at the list of  “Peano's Axioms” and try to indicate how all the
informal properties of the whole number system  follow from the properties in the list.=
There are many, many details to check. We will check some of the details to indicate how
(with several additional lectures) all the details could be ironed out.  In not doing
everything,  there is no attempt to “hide” something hard.  Any material we leave out is
truly just “more of the same.”



Definition  A   is a collection of objects with the following properties:Peano system c

 P1)  There is a special object in  named “ .”c !
 ÐAlthough the name “ ”  is intended to  “the whole number zero,” we! suggest
 really know  about how the object called “ ” in a Peano system actsnothing !
 except for what is stated in (or deducible from) the remaining axioms.

 P2)  For each object , there is exactly one object in  called the B − c c successor
   (for short, we write  to represent the successor of .of B B BÑ

 P3)   is not the successor of any object in  ! Àc

    ÐaB − Ñ B Á !c 

 P4)  Different objects in  have different successorsc À

    ( )  aB − ÑÐaC − ÐB Á C Ê B Á C Ñc c  

 P5)  Suppose  If   and if   is true,E © Þ ! − E ÐaB − Ñ ÐB − E Ê B − EÑc c 

 then .E œ c

Note:  In his 1889 book, Peano went so far as to also include a few other axioms about
how “ ” behaves:  for example,œ

     andÐaB − Ñ B œ Bc
   ÐaB − ÑÐaC − Ñ ÐÐB œ CÑ Ê C œ BÑÑc c

Our point of view is that “ ”  is a logical term meaning “is the same thing as” andœ
that such assumptions about “ ” do not really need to be spelled out although doingœ 
so would certainly be harmless.

A Peano system is an “abstract system” :  we are given no information whatsoever about
what the “objects” in  “really are,” and we have no information about how  can bec B

found for a given .  B − c The only things we know about the objects in  and theirc
successors is what the axioms P1-P5 say about their behavior.  Of course, we can
logically deduce (prove) new pieces of information about  (theorems) from thosec
axioms.

Until a reasonable collection of theorems about a Peano system is built up to use, the
proofs of theorems will usually rely on axiom P5 which we will refer to as the
induction axiom.

The challenge (and the amusement) of proving things about a Peano system is that we
have so little, at the beginning, to work with. We have to fight for each little new fact.
But the more things we prove, the more tools we have to work with and the easier it gets.



Notice that the informal whole number system, , obeys each of the axioms P1-P5=
provided that
  i)  the objects  in   to be whole numbers, andwe interpret B c
  ii)  “successor”   to mean the whole number “ .”we interpret B B  "

Under this interpretation,  is an example of a Peano system.  Of course, axiom P5  is=
what we called the Principle of Mathematical Induction (PMI) in .=

When we have an abstract system like  and wec

  i)  all the objects and operations in   (such as “successor”)interpret c
  as representing certain concrete objects and operations, and

  ii) all the assumptions about the objects/operations in the abstract system
  become true statements about the specific objects in the interpretation

then we say we have found a concrete  for the abstract system.  Thus, model  is a model=
for the abstract Peano system c.

Some Theorems About a Peano System c

To illustrate dealing with an abstract system, we will prove some simple theorems about
c that follow from P1-P5.   (Since the theorems follow logically from the axioms P1-P5,
and because P1-P5 (as  interpreted) are true statements in a model, each theorem must
also be true (as interpreted) in any model of  (for example, in ).  For example, see thec =
italicized interpretation of Theorem 1 in the model .= )

Theorem 1  For all ,  either  or    (that is, every nonzero B − B œ ! ÐbC − Ñ B œ C Bc c 

in  is a successor).  (c Interpreted in the model , Theorem 1 says that for each nonzero=
whole number , there is a whole number  such that B C B œ C  "Þ)

Proof  Let  or  or  is aE œ ÖB − À B œ ! ÐbC − Ñ B œ C × œ ÖB − À B œ ! Bc c c

successor  We need to show (using P5) that ×Þ E œ Þc

 i)  By definition of ,  E ! − E
 ii) Suppose .  Then  because   a successor (namely, theB − E B − E B  is
successor
 of ).B
   
By the induction axiom P5, we conclude that E œ Þ ñc

A  is a theorem that follows as a relatively quick and easy consequence of acorollary
previous theorem.



Corollary 2  If  and , then !   B − B Á ! Ðb C − Ñ B œ C Þc c 

Proof   Theorem 1 gives that if , then   B Á ! Ðb C − Ñ B œ Cc 

            To show uniqueness, notice that if   ,  then , soB œ C B œ D C œ D C œ D   and
(using the contrapositive of P4).    ñ

Definition   If  in , we call  .B œ C C c the predecessor of B

Notice that the definition makes sense: we can say  predecessor because (fromthe
Corollary 2) there can't be more than one predecessor for .  Corollary 2 therefore saysB
that each nonzero element  in  has a unique predecessor.B c

Theorem 3  For all ,   ( ).B − B Á Bc  that is, no object  in  is its own successorB c

Proof   Homework Exercise

Theorem 4  If , then either or can be obtained from  by applying theB − B œ ! B !c
successor operation to  a finite number of times.!

Proof   Let  or can be obtained from  by applying the successorE œ ÖB − À B œ ! B !c
operation to  a finite number of times! ×Þ

    (by definition of )! − E E

 Suppose .  We prove that B − E B − EÞ

  If ,  then  because  can be obtained by applying theB œ ! B − E B œ !  

  successor operation just  time.one

  If , then (because  can be obtained from  by a finiteB Á ! B − EÑ B !
  number of successor operations.  But then one additional application of
  the successor operation produces .   Therefore B B − EÞ 

By the Induction Axiom P5),  A , which proves the theorem.  œ ñc

Corollary 5  If  and , then one of  or  can be obtained from the other byBß C − B Á C B Cc
applying the successor operation a finite number of times.



Proof  If one of  or  is  (say,  then Theorem 4 says we can obtain  by applyingB C ! B œ !Ñ C
the successor operation to a finite number of times.B

           If neither  nor  is , then (by Theorem 4 ) we can obtain both  and by from B C ! B C !
using the successor operation.  Applying the successor operation to , we arrive first at!
(say) ;  and then continuing to apply the successor operation an additional number ofB
times produces .    C ñ

NOTE:   Theorem 4 and Corollary 5 are italicized because we will not use them in any
proofs  that come later.  In fact a “purist” might object that if we are trying to formally
develop a theory of Peano systems  the system of whole numbers , thenin order to define =
we should not be allowed to use an argument that involves doing something “a finite
number of times” objecting that we can't formally say what “a finite number of times”
means until after  we have defined the whole number system.
              Nevertheless, it seemed like it would be helpful to include the italicized results to
help build up our intuitive picture of what a Peano system  “looks like” as discussedc 
in the next section.
 See Theorem 13.
 



All Peano systems are “the same”

What does a Peano system “look like” ?   We can get an idea with a schematic diagram in
which an arrow “ ” points to “the successor.”   We start with , which has noÄ !
predecessor:

  ! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   

Theorem 4 tells us that every nonzero object  appears in this diagram eventually,B − c
after applying the successor a sufficient number of times.

When we make the diagram,  it will always “keep on going forward” that is, there will
never be any “backward loops”  like

 
Which axiom says that the first loop is impossible?  the second?  Why is the third loop
impossible ?

Thus we can informally picture a Peano system  as an “infinite linear chain” starting atc
its special element, :!

    (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   



All Peano systems must look the same. The technical phrase for this is that all Peano
Systems are isomorphic.  a little more precise, this means that if we have two To be 
Peano systems  and (we use  for the second Peano system and its objects),c c  boldface
then it is possible

 i) to pair off all the elements of  with all the elements of in such a way that soc c  
 that each object in one system has a unique “partner” in the other system.

 ii) to do this not just with some “random” pairing, but to do it in such a way that !
is paired with and the pairing respects the successor operation:   if  is partnered! B − c
with , then  (in ) is partnered with in )  in other words, “theB B Ð− B Ñ Àc c c 

successor of partner is the partner of the successor.”

Our images of these systems would then look like this where vertical arrows indicate
the “pairing”:

         (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ   

Î Î Î Î Î    
   (and so on, forever)! Ä ! Ä Ð! Ñ Ä ÞÞÞ Ä B Ä B Ä ÞÞÞ         

A slightly different way to think of this isomorphic “pairing” is just to imagine that each
object  in has been “renamed” subject to the following rules:B c

  i)   is renamed as ! !
  ii) if  is renamed as , then is renamed as B BB B 

From this point of view, the “second” Peano System  is just the “same old stuff” butc
with new names.

This is an example of an important phenomenon.  Sometimes different systems really are
complete look-alikes: one is just the other with elements “renamed” in a way that
respects the operations inside the system (e.g.,  “successor”).  The systems are perfect
“mirror images” of each other .  The words they have exactly the same structure
“structure” and “system” are a little vague, so we can't make a precise mathematical
definition here.  But here is an informal definition that may be useful to remember.

Informal Definition    Suppose there is a “pairing (or renaming) rule”  between two
systems which pairs off all the objects in the two systems with each other in a one-for-
one way.  Suppose, moreover, that this pairing is done in a way that respects all the
operations (like “successor”, for example) in the systems.  Then we say that the two
structures are  and the “pairing rule” is called an isomorphic isomorphism between the
structures.



Note:  “isomorphism”  comes from two Greek words,

  “isos”   meaning “equal” or “same”
  “morphe”  meaning  “shape” or “form” or “structure” )

To make the definition more precise, we would replace “pairing rule”  with “a one-to-
one, onto function” between the systems.  But that additional precision needs to wait
until we say more about functions, one-to-one functions, onto functions, etc.

Students who have already taken Math 309 (Matrix Algebra) should have seen the idea of
“isomorphic systems” before although the word “isomorphic” might not have been
used.  If is a finite dimensional vector space with basis , then  isZ œ Ö, ß ÞÞÞß , × ZU " 8

isomorphic to  (“looks just like”)  the vector space .  The “coordinate mapping” pairs‘8

off each vector  with a vector in namely,   where  areB − Z ß B Ð- ß ÞÞÞß - Ñ - ß ÞÞÞß -‘ Ð8
" 8 " 8

the coordinates of  with respect to the basis B U ÞÑ

This is sufficient detail for what we are going to do.  We have argued that any two Peano
systems are isomorphic, so that  “ .”if you've seen one Peano system, you've seen them all

However, those who are interested are encouraged to also read this optional
(indented) material.  Unlike the more informal discussion, above, the following
discussion makes no use of the “picture” and makes no use of the italicized results
Theorem 4  Corollary 5. and The “renaming” or “pairing” rule is defined
inductively without any reference to the figures above.

Define a “renaming” rule (function)  that pairs each element in  with aV c
“unique partner” in the other Peano system .  The definition of  is donec V
inductively (that is, using axiom P5):

  Let V !Ð!Ñ œ
  and,  aB − ÐB Ñ œ Ð B Ñ Ð‡Ñc V VÐ Ñ 

Ð‡Ñ ÐB Ñ ÐBÑ tells you how to find  (an object in )  if you already know V V c
(an object in ) This defines  for every c Þ B − ÀV c

 For example, the rule gives  V !Ð!Ñ œ ß
     V VÐ ÑÑ œ !Ð! Ñ œ Ð ! ß  

     ,   etc.V V Ð! ÑÐÐ! Ñ Ñ œ Ð Ð! ÑÑ œ     

 More precisely, if we let  is defined ,  then  andE œ ÖB − À ÐBÑ × ! − Ec V
 if , then so, by P5), .B − E B − E  E œ c

There are two important observations to make:



1)   elements   get assigned to  partners inDifferent differentBß C − c
c  B Á C ÐBÑ Á ÐCÑthat is, if , then To see this, we use induction.V V .

 Let   .  We want toE œ ÖB − À aC Ð C Á B Ê ÐCÑ Á ÐBÑ Ñ×c V V
 see that E œ Þc

  :  To see this, we need to check that if , then! − E C Á !
  V V œ !ÐCÑ Á Ð!Ñ Þ   In other words, we have to check
  that a nonzero  in  gets a nonzero partner in .C c c

 Since ,  then (by Corollary 2)  forC Á ! C œ D

 some .  Therefore D − ÐCÑ œ Dc V VÐ Ñ

   That means that has aœ Ð ÐDÑÑ Þ ÐCÑV V  
 predecessor  in .  But  has no predecessorV !ÐDÑ   c
 in  (by P3), so c  .V !ÐCÑ Á

If , we must show that , that is:  we mustB − E B − E

show that if , then  .  We do this byC Á B ÐCÑ Á ÐB Ñ+ V V 

showing the contrapositive:  if  , thenV VÐCÑ œ ÐB Ñ

C œ B Þ

Suppose Since  (by P3),V VÐCÑ œ ÐB ÑÞ B Á !  
V VÐB Ñ Á Ð!Ñ ! − E C Á ! (since ) so .  Therefore
C C œ D Þ has a predecessor, say  

Then Ð ÐBÑÑ œ ÐB Ñ œ D ÐDÑV V VÐ Ñ œ ÐV Ñ   .
By P4), we conclude that SinceV VÐBÑ œ ÐDÑÞ  
B − E B œ DÞ, this means that   But then
C œ D œ B .

  Therefore, by P5), E œ Þ ñc

2)  .  Again, we use induction.Every object in  acquires a partner from c c
Let  for some We need to show thatE B B œ Vœ Ö − À ÐCÑ C − ×Þc c
E œ cÞ
 
  because ! E ! œ V− Ð!Ñ 

   .   Suppose Then  for some B E B œ V− ÐCÑ C − Þc
  Therefore . In other words, V ÐV Ñ B BÐC Ñ œ ÐCÑ œ     
  is partnered with  from , so C − Þ c B E

By P5),  .E œ c



Putting observations 1) and 2) together, the rule gives an exact pairing, one-V 
for-one ( is a “one-to-one, onto function”) between the all the objects in  andV c
all those in .  By the definition of , the pairing respects the successorc V
operation work in the two systems:
    VÐ Ñ œ VB ÐBÑ 

 “the partner of the successor” “the successor of the partner”œ

More about a Peano System

We want to convince ourselves that a Peano system captures the essence of our informal
system  .  Already, we have a “mental picture” and a few theorems which suggest that=
the objects in a Peano system are arranged just like the whole numbers.  We want to see
that we can define “addition,”  “multiplication,” and “ ” between objects in a Peano
system and that, when we're done, the result acts just like  .=

All Peano systems look alike, so let's begin by assigning some convenient  to thenames
objects in a Peano system.  After all, needing to write things like   becomes!

tedious.

There are .    For example, some possibilities couldlots of possible ways to name things
be:

! ! ! ! ! ! !

!
! " "! "" "!! "!" ""!

      ...  etc.
Naming System œ † ‡ ¿ ð € ß
Naming System I II III IV V VI ...
Naming System ...
Naming System ...! " # $ % & '

The point is that there are lots of ways to  for , ..etc.  It'sinvent names !ß ! ! ß Þ 

important, here, to remember that however we decide to invent names for the objects in
the Peano system,  the names themselves don't give us any new .  But,information
keeping that in mind, we might as well use names are convenient and that remind us of
how we  the system is going to work.  So we'll use the intuitively familiar symbolshope
!ß "ß #ß $ß ÞÞÞ as in the fourth row of the table.

Caution  For now, ... are now just “marks on paper”  the !ß "ß #  names
 we're giving objects in the Peano system.  There's no more reason to say “ plus" #
œ $ œ À” than there is to say “† plus ‡ ¿” both are just ways of saying  (in

different naming systems) that  “  plus ” and in fact, the! ! œ !   

statement  “  plus ”  because we haven't! ! œ !   has no meaning yet at all
defined plus what “ ” means in a Peano system.

We  say , because (right now) that statement is just a newcannot # † # œ %
way of writing  ! † ! œ !    which, at the moment, has no meaning at
all, because we haven't even defined what it means to “multiply”  objects in a



Peano System.

We can, however, use these new names now to record things that we  already know.do
For example, the axioms for a Peano system now read:

 P1)  There is one special object named “ ” in ! c
 P2)  For each object , there is exactly one object in  called its 8 − c c successor
        (and denoted 8 Ñ

 P3)   is not the successor of any object, that is, ! Ða8 − Ñ 8 Á !c 

 P4)  Different objects have different successors, that is
   ,  a7 a8 − Ð7 Á 8 Ê 7 Á 8 Ñc  

 P5) Suppose  If   and ifE © Þ ! − Ec
   Ða8 − Ñ Ð8 − E Ê 8 − EÑc 

 then .E œ c

Just because of how we named things, statements like these are true:

     (i.e.,  is the successor of ) ! œ " " ! ß

  ! œ " œ #ß 

  % œ &

If we had decided instead to use the naming system in the first row of the table, the
following would be true:

  œ † œ
  œ † ‡ œ œ
  ð € œ

The theorems we already proved, with the new naming system, can now be written:

Theorem 1  For all , either  or  for some 8 − 8 œ ! 8 œ 7 7 −c c

Corollary 2  If  and , then  for a  .8 − 8 Á ! 8 œ 7 7 −c c unique

Theorem 3  For all , 8 − 8 Á 8c 

Theorem 4  If , then or can be obtained from  by applying the8 − 8 œ ! 8 !c
successor operation finitely often.

Corollary 5  If  and , then one of  and  can be obtained from7ß8 − 7 Á 8 7 8c
the other by applying the successor operation finitely often.



Defining Arithmetic in a Peano System

Addition

Let  be a Peano system in which we have named the elements .c Ð !ß "ß #ß ÞÞÞÑ

First, we want to define addition: what does  mean?  For any given  in , the7 8 7 c
definition tells (using P5, the induction axiom)  what it means to “add , on the right, to8
7.”

Definition A   Suppose .  Define7 − c

 i)     and7 ! œ 7
 ii) a8 − ß Ð7  8 Ñ œ Ð7 8Ñc  

For any given ,  we can use P5) to show that  has been defined for every :7 7 8 8

 Suppose  Let  is defined7 − Þ E œ Ö8 − T À 7  8 ×Þc

  By i), .! − E

  If  then  is defined.  So then  is also defined8 − Eß 7 8 7 8

  because ii) defines as the successor of   in  .7 8 7 8 c
  Therefore 8 − EÞ

 By P5), .  E œ ñc

Example

Suppose .7 − c
Then    (by definition Ai)7 ! œ 7

     because “ ” is the name we assigned to 7 " œ Ð7 ! Ñ " ! 

     by Definition Aiiœ Ð7 !Ñ

     by Definition Aiœ 7

   (Note: thus, the result of our definition of addition is that
    )“find the successor of ” is the same as “find .”7 7 "

   In the particular case where the preceding calculations7 œ !ß
   show that

 !  ! œ !
 !  " œ ! œ "

 !  # œ Ð!  "Ñ œ " œ # 

   If , the preceding calculation shows that 7 œ " "  " œ " œ #



   (  the name we assigned to ).  Similarlyœ "

     2  " œ # œ $

     ,$  " œ $ œ %

.               etc.

Ð ÑBy convention, let's agree that we may also write  for 7 Ð7 Ñ  

     because “ ” is the name we assigned to “ ”7 # œ Ð7 " Ñ # " 

     by Definition Aiiœ Ð7 "Ñ

     by the preceding exampleœ Ð7 Ñ 

   Letting .. gives the specific facts7 œ "ß #ß Þ

   "  # œ " œ # œ $ 

   #  " œ # œ $ œ % 

    etc. 
   Similarly, for any , we can reduce and work out the sum7ß8
   with enough patience.  F7 8 or example, that   &  % œ * Ðgive a
   justification for each stepÑ:

  &  % œ &  $ œ Ð&  $Ñ œ Ð&  # Ñ œ Ð&  #Ñ    

 œ Ð&  " Ñ œ Ð&  "Ñ œ Ð&  ! Ñ    

 œ Ð&  !Ñ œ & œ ' œ ( œ ) œ *    

From the definition of addition (Ai), we know that  for any   7 ! œ 7 7 − Þc BUT
that  mean that we can say     because we haven't proved thatdoesn't ! 7 œ 7 
addition, as we defined it in , is commutative.  The next theorem is a first step in thatc
direction.

Theorem 6   Ða8 − Ñ !  8 œ 8 œ 8  !c   

Proof   Let   We know  by the Definition Ai).  What we still8 − Þ 8  ! œ 8
need to prove is that   .Ða8 − Ñ !  8 œ 8c
            Let E œ Ö8 − À !  8 œ 8×Þc

 Definition Ai) says that, for any , .  In particular if7 7 ! œ 7
 , then   So 7 œ ! !  ! œ !Þ 8 œ ! − EÞ
 
 Suppose, for some , that .  Then8 8 − E
     (by Definition Aii, with !  8 œ Ð!  8Ñ 7 œ !Ñ 

     since œ 8 Ð 8 − EÑ

 Therefore 8 − EÞ

By the induction axiom P5), .   E œ ñc



To prove that addition  commutative and associative, we need first to prove a lemma.is

Lemma 7  Ða7 − ÑÐa8 − Ñ 7  8 œ Ð7 8Ñ œ 7 8c c   

Proof  We already know that  by Definition Aii).  What we stillÐ7  8Ñ œ 7 8 

need to show is that  Ða7 − ÑÐa8 − Ñ 7  8 œ Ð7 8Ñc c  

Let .  We need to show that 7 − Ða8 − Ñ 7  8 œ Ð7 8Ñc c  

Define .  We want to show that E œ Ö8 − À Ð7  8Ñ œ 7  8× E œ Þc c 

  (using Definition Ai), so Ð7  !Ñ œ 7 œ 7  ! ! − E  

 Suppose for some , that We need to show  that is, we need to8 8 − EÞ 8 − E 

 show that Ð7  8 Ñ œ 7  8 À   

  
   Definition Aii)Ð7  8 Ñ œ Ð7  8Ñ Ð   

          (because )œ Ð Ð7 8Ñ Ñ 8 − E 

       (Definition Aii)œ Ð 7 8 Ñ 

By P5), E œ Þ ñc

Theorem 8  a) Ða7 − ÑÐa8 − ÑÐa: − Ñ 7 Ð8  :Ñ œ Ð7 8Ñ  :c c c
            ( )Eddition is .associative

           b) Ða7 − ÑÐa8 − Ñ 7 8 œ 8 7c c
  ( )Eddition is .commutative

Proof   a)  Suppose  We need to show that7ß8 − Þc
  Ða: − Ñ 7 Ð8  :Ñ œ Ð7  8Ñ  :c
Let   We want to show that .E œ Ö: − À 7  Ð8  :Ñ œ Ð7 8Ñ  :×Þ E œc c

  0 :     by Definition Ai)− E 7 Ð8  !Ñ œ 7 8 Ð
        by Definition Ai , again)œ Ð7 8Ñ  ! Ð Ñ

  Suppose, for some , that   We  show that must be in : : − EÞ : EÞ 

     (by Definition Aii)7 Ð8  : Ñ œ 7 Ð8  :Ñ 

      (by Definition Aii, again)œ Ð7 Ð8  :ÑÑ

     because œ ÐÐ7 8Ñ  :Ñ Ð : − EÑ

      (by Definition Aii, again)œ Ð7 8Ñ  :

   Therefore : − EÞ

By P5), E œ Þ ñc



 b)  Suppose   We must show that .7 − Þ Ða8 − Ñ 7 8 œ 8 7c c

Let .E œ Ö8 À 7  8 œ 8 7×

  , by Definition Ai, and we proved in Theorem 6 that7 ! œ 7
  .  Therefore 7 œ ! 7 ! − EÞ

  Suppose, for some , that . We show that must be in .8 8 − E 8 E

    (by Definition Aii)7 8 œ Ð7 8Ñ 

      (because )œ Ð8 7Ñ 8 − E

      (by  Lemma 7)œ 8 7

  Therefore .8 − E

By P5),     E œ Þ ñc

Because addition is associative, we often write things like  without7 8 :
parentheses, because it doesn't matter whether we interpret this as meaning
Ð7  8Ñ  : 7 Ð8  :ÑÞor

Summary:  We have defined addition in .  We have proved the necessary theoremsÐ  Ñ c
to compute for any .  Addition turned out to be commutative and7 8 7ß8 − c
associative, and to have a “neutral” element,  for all ! À 7  ! œ ! 7 œ 7 7 − Þc
In other words (so far as we can see, anyway) , with addition, behaves exactly like ,c =
with addition.
       In , we can also multiply.  So now we hope to define a multiplication=
operation in  that behaves just like multiplication in .c =



Multiplication

We also want to define multiplication in .  We do that using addition and the successorc
operation.  Then we need to look at some theorems about multiplication behaves in  andc
how multiplication is connected to addition.

We could try making a definition like

  “  means the result of   to itself  times.”7 † 8 7 8adding

But this is an inconvenient way to put it because it doesn't give us a precise   “formula
7 † 8 œ ... ” to work with:  so what do we do?

We stop and look for motivation.  Think about how multiplication works in the
informal system .  In ,  , and,  if you already know how to find ,= = 7 † ! œ ! 7 † 8
there is a formula telling you how to find , namely7 † Ð8  "Ñ
  
  7 † Ð8  "Ñ œ 7 † 8 7

We use this fact about the informal system , to inspire our  of= definition
multiplication in the formal system .  Of course, this makes it likely thatc
multiplication in  will, in fact, act like multiplication in the informal system, .c =
And that's what we want.  We are trying to show how to create, from very simple
assumptions, a formal system  that acts like , so we “build in” what we need toc =
make the finished product be what we want it to be.

Definition M  Suppose .  We define7 − c

 i)     and7 † ! œ !
 ii)   for any ,  8 − 7 † 8 œ 7 † 8 7c 

( )Sometimes we will just write “ ” for “ ”78 7 † 8Þ

Exercise:  Suppose .  Verify (just as we did for addition) that  is defined for7 − 7 † 8c
all .8 − c
 
Example  For any ,7 − c

  7 † " œ 7 † ! œ 7 † ! 7 œ ! 7 œ 7

  7 † # œ 7 † " œ 7 † " 7 œ 77

  7 † $ œ 7 † # œ 7 † " 7 œ Ð77Ñ 7

   etc.

  For example, $ † " œ $



    ( )$ † # œ $  $ œ ' using earlier work on addition
    
              3% † œ % † # œ % † #  % œ % † "  % 

    œ Ð% † "  %Ñ  %
    œ Ð% † !  %Ñ  % œ ÐÐ% † !  %Ñ  %Ñ  %

    œ ÐÐ!  %Ñ  %Ñ  % œ Ð%  %Ñ  %
    (œ using all the operations for computing sums)...
          œ )  % œ ÞÞÞÞ œ "#

The next lemma gives a useful variation on the equations in Definition M.   It is an
analogue (for multiplication) of Lemma 7 (about addition).

Lemma 9   For all ,7ß8 − c
   
 a) ! † 7 œ ! œ 7 † !
 b) 7 † 8 œ 7 † 8  8

Proof  Suppose 7 − c

 a) by Definition Mi).  What we need to prove is that! œ 7 † !
 ! † 7 œ !

 Let E œ Ö7 − À ! † 7 œ !×c

   because  (by Definition Mi)! − E ! † ! œ !
  
  Suppose  We will show that 7 − EÞ 7 − EÞ

     by Definition Mii! † 7 œ ! † 7  ! Ð Ñ

     since œ !  ! 7 − E
      (by Definition Ai)œ !

  Therefore 7 − EÞ

 By P5),   .     E œ ñc

 b) Let  E œ Ö8 − À 7 † 8 œ 7 † 8  8×c 

  ,  because     (by Definition Mi)! − E 7 † ! œ !

      (by Definition Mi), again)œ 7 † !
       (by Definition Ai)œ 7 † !  !

  



  Suppose .    We show that To do this, we need to show8 − E 8 − EÞ

that
  7 † 8 œ 7 † 8  8 Þ   

    (by Definition Mii)7 † 8 œ 7 † 8 7   

      (because )œ Ð7 † 8  8Ñ 7 8 − E

    (by Theorem 8: addition isœ 7 † 8  Ð8 7 Ñ

         associative)
       (by Definition Aii)œ 7 † 8  Ð8 7Ñ

    (by Theorem 8; addition isœ 7 † 8  Ð7 8Ñ

         commutative)
    (by Definition Aii)œ 7 † 8  Ð7 8 Ñ

    (by Theorem 8: addition isœ Ð7 † 8 7Ñ  8

         associative)
        (by Definition Mii)œ 7 † 8  8 

  Therefore 8 − EÞ

 By P5,  .     E œ ñc

We can now prove a connection between addition and multiplication (the distributive
rule) and see that multiplication is associative and commutative.  For convenience, we
agree to write  for .78 7 † 8

Theorem 10   Ða7 − ÑÐa8 − ÑÐa: − Ñc c c
 
 a)  7Ð8  :Ñ œ 78 7: Ð †  and  are connected by the
            distributive rule Ñ
 b)   (7Ð8:Ñ œ Ð78Ñ: Multiplication is associative.Ñ
 c)    (78 œ 87 Multiplication is commutative.Ñ
 
Proof a) The proof of 1) is an assigned problem in Homework 6.  We assume 1) in the
arguments below.

 b) Suppose .  We need to show that   7ß8 − Ða: − Ñ 7Ð8:Ñ œ Ð78Ñ:c c

Let   We want to show .E œ Ö: − À 7Ð8:Ñ œ Ð78Ñ: ×Þ E œc c

 since    (by Definition Mi)! − E 7Ð8 † !Ñ œ 7 † !
      (by Definition Mi, again)œ !
   ,  (by Definition Mi, again)  œ Ð78Ñ † !
 
Suppose, for some , that Then: : − EÞ

    (by Definition Mii)7Ð8: Ñ œ 7Ð8:  8Ñ

         (by part 1 of this theorem: theœ 7Ð8:Ñ 78



              distributive rule)
       (because )œ Ð78Ñ: 78 : − E
      (by Definition Mii)œ Ð78Ñ:

 Therefore : − EÞ

By P5,  .  E œ ñc

 c)   Suppose .  We need to show that 7 − Ða8 − Ñ 78 œ 87c c

Let  We want to show .E œ Ö8 − À 78 œ 87×Þ E œc c

  because   (by Lemma 9)! − E 7 † ! œ ! œ ! † 7
       
 Suppose, for some , that   Then8 8 − EÞ

    (by Definition Mii)78 œ 787

             (because œ 877 8 − EÑ
              (by Lemma 9)œ 8 7

  Therefore 8 − EÞ

By P5,       E œ ñc

Because multiplication is associative, we often write things like  without78:
parentheses, because it doesn't matter whether we mean  or Ð78Ñ: 7Ð8:ÑÞ

Example  We proved earlier that (for example)    By the7 † $ œ Ð77Ñ 7Þ
commutative law for multiplication, we can now say that 7 † $ œ Ð77Ñ 7
œ $ † 7Þ  We could also get this fact from :addition and the distributive law
Ð7 7Ñ 7 œ Ð7 † #Ñ 7 œ 7Ð#  "Ñ œ 7 † $Þ



In the proofs that follow, we will now use the definitions of  and  more freely †
(without always citing an explicit justification for each and every step).  We will also
freely use that multiplication are associative and commutative, and that the distributive
law is true in .  In some arguments, such as the proof of part c) of the followingc
theorem, we use of results previously proven and don't need to use an induction in the
argument.

Theorem 11  Suppose 7ß8ß - − Þc

 a)  If , then 7 Á ! 7 8 Á !Þ

 b)  (   If  , then Cancellation for  Ñ 7 - œ 8  - 7 œ 8Þ
      (  If  then The theorem- 7 œ -  8ß 7  - œ 8  -ß =97 œ 8Þ
      tells us that we can “cancel  on the left” too- ß Þ)

 c)  If  and , then 7 Á ! 8 Á ! 78 Á !Þ

Note:  We already proved in Theorem 8b) that addition is commutative.  Therefore it
doesn't matter here, in part a), if we write “ ” or “ ”:  11a) says that if an7 8 8 7
object is not , then its sum with any other object (in either order) is not .! !
           Suppose   What can we conclude in  ?7 8 œ !Þ c

Proof     a) Suppose   Let 7 Á !Þ E œ Ö8 − À 7  8 Á !×Þc

  because .! − E 7 ! œ 7 Á !

 Suppose, for some , that Then  (using P3).8 8 − EÞ 7 8 œ Ð7 8Ñ Á ! 

 Therefore .   By P5,  .    8 − E E œ ñ c

 b) This proof is an assigned exercise in Homework 6.

 c) Suppose  and   We know that  for some  (by Theorem 1),7 Á ! 8 Á !Þ 8 œ 5 5

 so   Since , we conclude that   (using part78 œ 75 œ 75 7Þ 7 Á ! 78 Á !

 a) of this theorem).  ñ

(Note:  Part c) is done without using induction (P5).  , the proof uses otherHowever
results (such as Theorem 1) that  proved using the induction axiom P5.were



Example For short, we can agree to write “ ”  for “ ”,    for “ ”, etc.8 8 † 8 8 Ð8 † 8Ñ † 8# $

Show that   (Ð8  "ÑÐ8  #Ñ œ 8  $8  #Þ# Justify each step!  Be sure that each
“arithmetic calculation” is one that we justified.)

 Ð8  "ÑÐ8  #Ñ œ ÐÐ8  "Ñ † 8Ñ  Ð8  "Ñ † # œ Ð8  " † 8Ñ  # † Ð8  "Ñ#

   œ Ð8  8Ñ  Ð#8  #Ñ œ Ð8  Ð8  #8ÑÑ  ## #

   œ Ð8  8Ð"  #ÑÑ  ##

   œ Ð8  8 † $Ñ  ##

   œ Ð8  $8Ñ  ##

   œ 8  $8  ##

Note: On the surface, it appears that we have shown, without induction, that

  )  Ða8 − Ð8  "ÑÐ8  #Ñ œ 8  $8  #c #

In fact, nearly every step in the calculations is justified by a theorem whose proof  usedid
induction.

The truth is that the proof of  statement of the formevery

  Ða8 − Ñ T Ð8Ñc

must depend on the induction axiom P5 (either in the proof itself, or in the proofs of
earlier theorems that are used in the proof).



Defining an “Order Relation” in a Peano System

Finally, we can also introduce an “order relation”, , into .Ÿ c

Definition   Suppose We say equivalently, iff7ß8 − Þ 7 Ÿ 8 Ð 8   7Ñc
Ðb- − Ñ Ð7  - œ 8ÑÞc
                    We say equivalently, iff  7  8 Ð 8  7Ñ 7 Ÿ 8 7 Á 8Þand

Example  For each :7 − c

    so, by the definition,  ! 7 œ 7 ! Ÿ 7
   so, by the definition, 7 ! œ 7 7 Ÿ 7Þ

Theorem 12  For all 7 − ß8 − ß : −c c c

 a)  7 Ÿ 7
 b)  if  and , then 7 Ÿ 8 8 Ÿ : 7 Ÿ :Þ
 c) if  and , then 7 Ÿ 8 8 Ÿ 7 7 œ 8Þ

Proof   a) See the example, above.

 b) If , there is a  such that 7 Ÿ 8 - 7 - œ 8Þ
 If , there is a  such that 8 Ÿ : . 8  . œ :Þ
     Therefore : œ 8  . œ Ð7 -Ñ  . œ 7 Ð-  .Ñß
 so 7 Ÿ :Þ

 c) If , there is a  such that 7 Ÿ 8 - 7 - œ 8Þ
 If , there is a  such that 8 Ÿ 7 . 8  . œ 7Þ
    Since 7 - œ 8ß
  soÐ7  -Ñ  . œ 8  . œ 7ß
     Theorem 11b  lets us cancel the 7 Ð-  .Ñ œ 7 œ 7 !Þ Ñ 7
 and get
    But then, by Theorem 11a),  -  . œ !Þ - œ . œ !Þ
   Therefore  8 œ 7 - œ 7 ! œ 7Þ ñ

Theorem 13 Ða7 − Ñ Ða8 − Ñ Ð7 Ÿ 8 8 Ÿ 7Ñc c or 

Proof  Suppose   We need to show that or .7 − Þ Ða8 − Ñ Ð7 Ÿ 8 8 Ÿ 7Ñc c

Let or   is true .  We will show that E œ Ö8 − À 7 Ÿ 8 8 Ÿ 7 × E œ Þc c

By the example above, , so 8 œ ! Ÿ 7 ! − EÞ



Suppose, for some , that   8 − 8 − EÞ Ðc Since the statement used in defining  containsE
“or”, there are two cases that follow.Ñ

  i) If , then  such that .  In that case,7 Ÿ 8 b- − 7 - œ 8c
   so  and therefore 7 - œ Ð7 -Ñ œ 8 7 Ÿ 8 8 − EÞ    

  ii) If ,   such that 8 Ÿ 7 b- − 8  - œ 7Þc

   If , then so , so- œ ! 8 œ 7ß 8 œ 7 œ 7 " 

    and therefore 7 Ÿ 8 8 − EÞ 

   If , then  has a predecessor  in .- Á ! - . À - œ .c 

   In that case,  (by Lemma 7)8  . œ 8  . 

     ,  so œ 8  - œ 7 8 Ÿ 7

   and therefore 8 − EÞ

  In all cases, 8 − EÞ

Therefore, by P5,  E œ Þ ñc

Note:  Theorem 13 is the correct, rigorous version of the statement in Corollary 5 a
corollary that was stated in italics since its “proof” was questionable.
    

Corollary 14  a7a8 − 7  8 7 œ 8 7  8Ñc (  or  or 

Proof ,  By Theorem 13  we know or 7 Ÿ 8 7   8Þ
If , then (by definition of  or .  7 Á 8  Ñß 7  8 7  8 ñ

Theorem 15    (Cancellation for multiplication) If  and  and ,7ß8ß : − : Á ! 7: œ 8:c
then   (   7 œ 8Þ Since multiplication is commutative, if then :7 œ :8ß 7: œ 8:
=97 œ 8Þ The theorem tells us that we can cancel  a nonzero   “on the left” too.: )

Proof   ( ).  )  Suppose By Theorem 13,Provide reasons where necessary 7: œ 8:Þ
either there is a   such that , or there is a  such that .- − 7 - œ 8 - − 8  - œ 7c c

If , then .  Since , we have7 - œ 8 7:  -: œ 8: 7: œ 8: 7:  -:
œ 7: œ 7:  !Þ 7: -: œ !Þ  By Theorem 11b), we can cancel “ ” and get Since
: Á ! - œ ! 7 œ 8Þ, we get (by Theorem 11c) and therefore 

If , the proof that  is entirely similar.  (8  - œ 7 7 œ 8 You can just interchange
the 's and the 's in the preceding paragraph.7 8 )    ñ



Finally, we need to check that the “order relation”  interacts nicely with addition andŸ
multiplication (just as , + ) interact nicely in the informal system .)   ForŸ ß  =
example,

Theorem 16  Suppose   and that Then7ß8ß : − 7 Ÿ 8Þc

  a)   7 : Ÿ 8  :
  b   Ñ 7: Ÿ 8:Þ

Proof    a) Since , there is a  such that Then7 Ÿ 8 - − 7 - œ 8Þc
    soÐ7  -Ñ  : œ 8  :ß
   , soÐ7  :Ñ  - œ 8  :
   7 : Ÿ 8  :Þ ñ

  b) This is an assigned problem in the homework.



Looking Back and Looking Forward

Loosely speaking, a  refers to some objects (of unspecifiedformal mathematical system
nature),some axioms that describe precisely how the objects behave, and the body of
definitions and theorems that grow out of the axioms.  A Peano system is a formal
mathematical system.

An  mathematical system is a not very precise, everyday term for how we view ainformal
body of mathematical knowledge, often very well-developed, when we are not bothering
to think about its basis at the axiomatic level.

An example would be our  system of whole numbers, , together with all itsinformal =
arithmetic. We have been taking the point of view that the system of whole numbers, ,=
has not yet been carefully defined, even though it is a system that (somehow, informally)
we seem to know a lot about. We have, as yet, no answer for the question “Just what
exactly is the whole number system?”

We believe that the Peano Axioms P1-P5 are true in this informal system, , if we=
interpret the objects in interpret successor in c c  as whole numbers and   to mean “the
next whole number.”  Our understanding although we only have informal knowledge
about  to judge by is that the system of whole numbers is a model for a formal Peano= 
system .c

Moreover we can start with a Peano system, define , ,  in , and prove theorems † Ÿ c
about how these “abstract” operations behave.  These theorems turn out (when
interpreted in the model ) to be in agreement with how we understand arithmetic in the=
informal system, .=

For example, we proved that in    and thatc À 7  ! œ 7 œ ! 7 7 † " œ 7 œ " † 7à
addition and multiplication are commutative and associative;  and that the distributive
law connects addition and multiplication. We also proved some other theorems about
Peano arithmetic, such as the cancellation laws for addition and multiplication. We
defined an order  in  which interacts nicely with addition and  multiplicationŸ Þc

Because mathematicians don't care (unless they are becoming philosophers) what the
whole number “  are”, and because a formal, abstract Peano system  seems toreally c
perfectly mirror the informal system , mathematicians are perfectly happy to accept as a=
formal definition that  is some Peano system or another.=

Since all Peano systems “look exactly alike,” it doesn't really matter much which
particular Peano system we define  to be.  However,  is supposed to be the= set theory
foundation for mathematics, so it would be nice to define  to be some particular Peano=
system whose objects are .sets

To do this, we would need to have:



  i)  a collection of ,  andsets

  ii) an operation (called “successor” ) that, within this collection,
  assigns to each set  a successor set  and does so  in such a way thatB B

  the axioms P1-P5) are true.

This would be a Peano system whose objects are actually sets, and which (like any Peano
system) would behave just like the whole number system.  We could then define once
and for all, officially and formally this particular Peano system to be the system  of =
whole numbers. We would call the sets (objects) in   .= whole numbers

Suppose this can be done.

i) We are  claiming to have  that  is this particular Peano system itnot proved = 
makes no sense to prove a definition.  But the official, formal definition for =
does give us a system of sets which behaves, as best we can judge, just like the
informal system  that we started with.=

ii) There might also be  ways in which someone could officially define  andother =
get a system that behaves in the right way. For philosophical or aesthetic reasons,
someone might prefer this other approach.  But mathematically, the choice really
doesn't matter:  how the whole numbers  is all the that really countsbehave
mathematically so we can all manage to live with whatever particular formal
definition for  was chosen.=



Getting a Peano system of sets

We want to actually construct a Peano system whose objects are sets in order to complete
the official definition of  in terms of set theory.=

The notion of  “successor” for sets came up earlier in a Homework Set 3.  Here is the
definition again.

Definition   For any  ,    The set  is called the set successor of B B œ B  ÖB×Þ B Þ  B

Notice that

 i)  We can form the successor of  set whatsoever.  For example,any

      ,   andÖ+ß ,× œ Ö+ß ,×  Ö Ö+ß ,×× œ Ö+ß ,ß Ö+ß ,××

      ‘ ‘ ‘ œ  Ö ×

 ii)  Since it is always true that .B − B ß B Á g 

 iii) If then .  Therefore  is always true.C − Bß C − B  ÖB× œ B B © B 

(Note:  iii) tells us that “successor sets” are rather special.  If you pickB 

a set  “at random” and , then it usually doesn't happen that D B − D B © D
is  true.also

 

Example

  g
    g œ g  Ög× œ Ög×

      g œ Ög× œ Ög×  ÖÖg×× œ Ögß Ög×× 

     g œ Ögß Ög×× œ Ögß Ög××  ÖÖgß Ög××× œ Ögß Ög×ß Ögß Ög×× 

  ã
  and so on.



Definition   Suppose  is a collection (set) of sets.   is called  ifM M inductive

  a)  ,  andg − M
  b)  if  then B − Mß B − MÞ

Then we ask: are there any inductive sets?  Informally, it certainly looks like there are.
For example, we could form the set

    Ögß g ß g ß g ß ÞÞÞ×  

However, this “example” of an inductive set (although fine, informally) seems just a little
shaky if we're being very careful.  After all, this set is only inductive because it is
described using a rather casual  “etc.”  that is,  “ ” Ð ÞÞÞ ÑÞ

At this point, we should take a brief look at the axioms for set theory itself.  This is “as
deep as we ever dig” since set theory, we have agreed, is to be the very foundation for all
mathematics.  In other words, all mathematics flows from these axioms.

Axiomatic (that is, ) set theory starts with an abstract system of unspecified formal objects
(called sets) and a  “ ” among them.  We know absolutely  about theserelation nothing−
objects except that they behave in ways described by 10 axioms almost always called
the ZFC axioms ( “Zermelo-Fraenkel-with Choice” axioms   (œ ÑÞ Of course, these axioms
were chosen to create a  system of objects that would behave, as best we can tell, formal
“just like” naive ( ) set theory.informal )

A careful study of the ZFC Axioms, and the theorems that can be proved from them, is a
whole field of study in itself, usually called “Axiomatic Set Theory.”  In order to get the
flavor, here is a partial list of the axioms, omitting some of the more technical ones that
we don't need to think about at all for this course.  (The quantifiers in these axioms  apply
to the “universe” of sets so means “for all sets ”, etc.  Convince yourself that ÐaBÑ B
the English translations given below are correct.)



  Zermelo-Fraenkel-with-Choice (ZFC): Axioms for Set Theory

 ZFC1    (aBaC Ð aD D − B Í D − CÑ Í B œ CÑÑ
  “ Two sets are equal iff they have the same members. ”
 
 ZFC2    ( )bBaC C Â B
  “ There is a set with no members (an empty set). ”

     If “two” sets both have no members, then they certainly have the same
     members (none at all !) so, by ZFC1, they are the same set.  In other
  words, ZFC1 implies that there is only one empty set.  For convenience
  we can give it a name:  g 

 ZFC3    (  aBaC ÐbD a? Ð? − D Í Ð? œ B ” ? œ CÑÑÑ
  “ If  and  are sets, then there is a set ”B C D œ ÖBß C×Þ

 ZFC4  aBbC ÐaD ÐD − C Í b, ÐD − , • , − B ÑÑÑ
  “ For any set , there is a set  consisting of the members of theB D
  members of .”B

     We can agree to give this set z a name:  -B

 ZFC    (   (& aBbC aD D − C Í ÐaA ÐA − D Ê A − BÑÑÑÑ

  If we agree to  “ ” to be shorthand for  define D © B aA ÐA − D Ê A − BÑ
  Then ZFC5 could be written     .  That is,aBbC ÐaD ÐD − C Í D © BÑÑ
  axiom ZFC5 says “every set  has a power set.”B

 ZFC6    (  (bM Ðg − M • aC C − M Ê C − MÑ Ñ

  There exists an inductive set.

   plus  4 other more technical axioms (omitted ) ZFC7,  ZFC8, ZFC9, À
       ZFC10 (AC)

 The axiom ZFC10  is called the .  It arouses someAxiom of Choice (AC)
  controversy among those mathematicians who worry aboutphilosophical
 foundations of mathematics, so  mathematicians omit it from thea few
 list.  The 10-axiom system ZFC is the axiom system most
 mathematicians would use for set theory (and therefore for all mathematics).
 If AC is omitted, then ZFC1-ZFC9 are referred to as the “ZF”  axioms.
 We may say a little about the Axiom of Choice later in the course.



Although we have taken a naive (informal) approach to set theory, everything that we
have done (or will do) with sets can be justified by theorems provable from the ZFC
axioms.

Returning to the question we were asking: we are convinced (informally) that set theory
should contain an inductive set for example, the one described informally by

   Ögß g ß g ß g ß ÞÞÞ ×     

In  set theory, the existence of an inductive set (at least one, maybe more)formal
is guaranteed by axiom ZF6 it's built right in so that the formal ZFC system will
contain an object that our intuition expects to be there.

Definition I‡  Choose an inductive set  and.M
  define   for  inductive set = œ ÖB − M À B − N N×Þevery

This set, , together with the successor operation for sets, is going to turn out to=
be a Peano system.  And it is going to be the particular Peano system that we use
as the official definition for the system of whole numbers.  For now, choosing to
call this set “ ”  is in  of what's going to happen later.  But for the= anticipation
moment, it is nothing but called , which just happens to have the same name as=
the system of whole numbers.

By definition, , but the definition tells us that, in fact, = © M   is a subset of every=
inductive set N  (including, for example,    Therefore you could think of  asN œ MÑÞ =
= œ ÖN À N ×Þ+ is an inductive set

As a matter of fact, axiomatic set theory contains many inductive sets.   But
 i) The definition of  would make sense even if there were only one=
 inductive set, .M
 ii) Convince yourself that if  a different inductive set  were used insteadM w

 of  in the definition, then the resulting set would the same would be theM = w

 same:   = =w œ Þ

Although  is an intersection of inductive sets, we can't assume just assume that makes = =
itself an induction set.  But the next theorem confirms that, in fact, it is.

Theorem 17   = is an inductive set.

Proof   a)  is in  inductive set  so g N ß g − Þevery =
  b) Suppose .  Then (by definition of )  is a member of  inductiveB − B= = every
 set   Therefore  is also a member of  inductive set  (by definition ofN Þ B N every
 “inductive set”).  Hence B − Þ =

Therefore  is inductive.   = ñ



Since  for every inductive set , and because we now know that  itself is an= =© N N
inductive set, we can now say that  is the   .= smallest inductive set

Since  ;   therefore  therefore  therefore  and so on.g − g − à g − à g − à= = = =  

Caution:  We are using the same notation for “successor of a set ”  as weB B

used for “successor” in a Peano system.  But don't let the notation deceive:  we
have no right to assume that the successor operation for sets obeys the rules
axioms P1-P5.  We need to check whether that is true.

(It  turn out to be true;  when we have proved that, then we will know that thedoes
set  , with the set successor operation, is a Peano system.)=

Definition    ! œ g
(We are simply agreeing that  will be another name for .)! g

Since , we now haveg − =

  P1:  There is a special object in  named .= !
  (   is the set ! gÞ )

Because  is inductive, the successor set  for each set  in  is also in .  Therefore= = =B B

  P2:  For every object (set) , there is a successor in .B − B= =

We remarked earlier that  for every set .  ThereforeB Á g B

  P3:  For all ,  B − B Á ! Ð œ gÑ= 

Suppose , and suppose thatE © =

   i)   ,  and! Ð œ gÑ − E
   ii) ÐaB − Ñ ÐB − E Ê B − EÑ= 

then , by definition, is an inductive set.  But  is the  inductive set, so E © EÞ= =smallest
Therefore This shows that P5 holds in .E œ Þ= =

  P5:  Suppose E © À=
         i)  if   ,   and! Ð œ gÑ − E
         ii) if   ÐaB − Ñ ÐB − E Ê B − EÑ= 

  
                         then E œ Þ=

To show that , with the set successor operation, is a Peano system, we now only need to=
prove  P4:  if  and  then   That takes a little more work.Bß C − B Á Cß B Á C Þ=  



We will be using another definition introduced earlier (in Homework Set 4).

Definition   A set  is called  iff  5 ÐaBÑÐ aCÑ ÐB − C − 5 Ê B − 5Ñtransitive
( ”Less formally,  is transitive if  “every member of a member of  is a member of .B 5 5

For example Ögß Ög×ß Ögß Ög× ×× Ög ÖÖg×× × is transitive but ,  is  transitive.not

Theorem 18  For any set , the following are equivalent:E

  i)  is transitiveE
  ii) -E © E
  iii) + − E Ê + © E
  iv) E © ÐEÑc

Proof   This theorem was an exercise in homework.  See the Homework 4 Solutions
online if you're uncertain about the proof.  ñ

Theorem 19  If  is a transitive set,  then 5 5 œ Ð5 ÑÞ- 

Remember: -Ð5 Ñ  just means the “set of all members of the sets that are in the
collection .”5

Proof i) Suppose .  Then , where , that is, where .B − Ð5 Ñ B − D D − 5 D − 5  Ö5×-  

 
 if , then  so    is assumed to be transitiveD − 5 B − D − 5 B − 5 5because
 if , then  so D − Ö5× D œ 5 B − 5

Either way, we have .  Therefore .D − 5 Ð5 Ñ © 5 - 

 ii) Suppose .  Since  Therefore B − 5 5 − 5 ß B − Ð5 ÑÞ 5 © Ð5 ÑÞ  - -
Hence .    -Ð5 Ñ œ 5 ñ

Alternate Proof   ( )a little slicker:  think about each step - - -Ð5 Ñ œ Ð5  Ö5×Ñ œ 5

 Ö5× œ 5  5 5 5 © 5 E œ 5- - -.  Since  is transitive,   (by Theorem 18, with ).
Therefore -5  5 œ 5Þ ñ

The next theorem gives us lots of examples of transitive sets.

Theorem 20  If , then  is transitive.5 − 5=



Proof   We use the fact the P5 is true in the set .   Let is transitive= =E œ Ö5 − À 5 ×Þ

  i)   is transitive, so ! Ð œ gÑ ! − EÞ

  ii) Assume ,  We will show that that is, we will show that5 − E 5 − E 

   is  also a transitive set.5

  Since  is transitive, Theorem 19 says that .  Since 5 Ð5 Ñ œ 5 5 © 5-  

(for
   set , transitive or not), we haveany 5 Ð5 Ñ œ 5 © 5 Þ-  

  Since , Theorem 18 with  says that is a-Ð5 Ñ © 5 Ð E œ 5 Ñ 5   

transitive
  set.   Therefore 5 − EÞ

 By P5, E œ Þ ñ=

Now we can finally show that the remaining Peano axiom, P4, is true in the set .=

Theorem 21   Suppose If  , then Bß C − Þ B Á C B Á C Þ=  

Proof ( )  Since and  are in , they  are transitive (byWe prove the contrapositive. B C  =
Theorem 20).  Thus, if  , then Theorem 19 gives us that B œ C B œ B œ C œ C   - -
ñ

We have now achieved the objective.  The set , as given in Definition I , with the set= ‡

successor operation, is a Peano system.

 Definition    = The Peano system  is called the set of whole numbers.  The=
 members of  are called whole numbers.=



Names for the whole numbers

We can name the objects in  using the same system we used for any abstract Peano=
system:
  Member of        Name =
        (set)

       g !  
        g œ Ög× "

  { }     g œ g œ Ögß Ög×× # 

       g œ Ögß Ög×× œ Ögß Ög×ß Ögß Ög××× $ 

    ã
   
Thus, in our official definition of , the whole numbers as really being = !ß "ß #ß $ÞÞÞ sets
(or, more precisely, names of sets).

Some interesting (amusing?) observations show up in the list above:

  i) ! œ g
   " œ Ög× œ Ö!×
   # œ Ögß Ög×× œ Ö!ß "×
   $ œ Ögß Ög×ß Ögß Ög××× œ Ö!ß "ß #×

  The pattern suggests a theorem (which we won't take the time to prove):
   !every whole number is the set of preceding whole numbers

  ii)  ...,  in other wordsg − Ög× − Ögß Ög×× − Ögß Ög×ß Ögß Ög××× −
  
       ! − " − # − $ − ÞÞ
  
  Also, for example,  0 3,    2− − $

  If you continued the list of successors and names, you would keep
   observing that

    as defined in a Peano system)  7  8 Ð Í 7 − 8

  That is also a theorem that can be proved.

 Definition  8 8 − 8 Á !Þ is called a if  and   The set of naturalnatural number =
 numbers  is defined to be the set . = Ö!×

Therefore,  natural numbers can also be thought of as sets.



Conclusion not:  Having done all this, the point is  that in the future you should always
be thinking of the whole numbers as sets.  In fact, you ordinarily should think of the
whole numbers the way you always have.

  The real points are that

   1) There is a very small collection of axioms (P1-P5) from which
   all aspects of the whole number system (including
   arithmetic and rules for inequalities) can be carefully and
   systematically proven,  and that

   2) the whole numbers, and their arithmetic,  be “built” from setcan
   theory in accordance with the view the sets should be a
   foundation for everything we need in mathematics.

   We will see soon that the set of integers can be built from the set of
   whole numbers (sets) so each integer will be a set.  The set of
   rationals from the set of integers (sets) so each rational number
   will be a set;  and so on.


