Math 417, Fall 2009

Homework 2

Homework 1 will be due in class on Tuesday, September 22.
Problems to think about (not to hand in):
A. True or false:
a) if A is infinite and B is countable, then $A \cup B \sim B$
b) if A is infinite and B is countable, then $A \cup B \sim A$
B. What is wrong with the following argument?

For each irrational number p, pick an open interval (a_{p}, b_{p}) with rational endpoints and centered at p. Since $\mathbb{Q} \times \mathbb{Q}$ is countable, there are only countably many possible pairs ($\left.a_{p}, b_{p}\right)$. Furthermore, the mapping $\Phi: \mathbb{P} \rightarrow \mathbb{Q} \times \mathbb{Q}$ given by $\Phi(p)=\left(a_{p}, b_{p}\right)$ is one-to one, since $\left(a_{p}, b_{p}\right)$ is centered at p. Therefore \mathbb{P} is equivalent to a subset of $\mathbb{Q} \times \mathbb{Q}$, so \mathbb{P} is countable.
C. Prove or give a counterexample for the following statement:

If \mathcal{C} is an uncountable collection of uncountable subsets of \mathbb{R}, then at least two sets in \mathcal{C} must have uncountable intersection.

To hand in:

1. If A is uncountable and B is countable, prove that $A \sim A-B$.
2. \quad A subset B of X is called cocountable if $X-B$ is countable and cofinite if $X-B$ is finite. (The name is an abbreviation: cocountable $=\underline{\text { complement is countable.) }}$
a) Prove that if B and C are cocountable subsets of X, then $B \cup C$ and $B \cap C$ are also cocountable. Is the analogous result true for cofinite sets?
b) Show how to write the set of irrational numbers, \mathbb{P}, as an intersection of countably many cofinite subsets of \mathbb{R}.
3. A collection \mathcal{A} of sets is called pairwise disjoint if whenever $A, B \in \mathcal{A}$ and $A \neq B$, then $A \cap B=\emptyset$. For each statement, provide a proof or a counterexample:
a) If \mathcal{A} is a collection of pairwise disjoint circles in the plane, then \mathcal{A} is countable.
b) If \mathcal{A} is a collection of pairwise disjoint circular disks in the plane, then \mathcal{A} is countable.
4. A sequence s in \mathbb{N} is called eventually constant if $\exists k, l \in \mathbb{N}$ such that $s_{n}=l$ for all $n \geq k$. Prove that the set of eventually constant sequences in \mathbb{N} is countable.
5. Let A be an uncountable subset of \mathbb{R}. Prove that there is a subset of distinct elements $\left\{a_{n}: n=1,2, \ldots\right\} \subseteq A$ such that $\sum_{n=1}^{\infty} a_{n}$ diverges.
6. Suppose S is a countable subset of \mathbb{R}. Prove that there exists a fixed real number, c such that $s+c$ is transcendental for every $s \in \mathrm{~S}$. (Hint: if $s \in S$, then for how many values of r can $s+r$ be algebraic?)
7. a) Show how to write \mathbb{N} as the union of infinitely many pairwise disjoint infinite subsets.
b) Show how to write \mathbb{N} as the union of uncountably many sets with the property that any two of them have finite intersection. (Such sets are called almost disjoint.)
(Hint: This is a statement that actually is true for any infinite countable set, not just for \mathbb{N}. For part b), you may find it easier to solve the problem for \mathbb{Q} instead, and then use a bijection to "convert" your solution for \mathbb{Q} into a solution for the set \mathbb{N}.)
8. Let D be a countable set of points in the plane, \mathbb{R}^{2}. Prove there exist sets A and B such that
$D=A \cup B$, where the set A has finite intersection with every horizontal line in the plane and B has finite intersection with every vertical line in the plane.

Notes: 1) This problem is fairly hard. You might get an idea by starting the easy special case of $D=\mathbb{N} \times \mathbb{N}$ 2) The statement that " \mathbb{R}^{2} can be written as the union of two sets A and B where A has countable intersection with every horizontal line and B has countable intersection with every vertical line" is, in fact, equivalent to the continuum hypothesis (see p. 40) !

