Math 417, Fall 2009 Homework 4

Homework 4 will be due in class on Thursday, October 15.

1. Suppose (X, d) is a metric space and $x \in X$. Prove that the following two statements are <u>equivalent</u>:

i) x is not an isolated point of X

ii) every open set containing x contains an infinite number of points.

2. The <u>Hilbert cube</u>, *H*, is a certain subset of ℓ_2 : $H = \{x \in \ell_2 : |x_i| \le \frac{1}{i}\}$. Prove that *H* is closed in ℓ_2 . (*Not to hand in: is H also open in* ℓ_2 ? *Prove or disprove.*)

3. A subset A of a space (X, d) is called a G_{δ} set if A can be written as a countable intersection of open sets; A is called an F_{σ} set if A can be written as a countable union of closed sets.

The names G_{δ} and F_{σ} go back to the classic book <u>Mengenlehre</u> of the German mathematician Felix Hausdorff. The "G" and the "F" represent "open" and "closed"; σ and the δ in the notation represent abbreviations for the German words used for union and intersection: Summe and Durchschnitt.

a) Prove that in a pseudometric space (X, d) every closed set is a G_{δ} set and every open set is an F_{σ} set.

b) In \mathbb{R} , the set \mathbb{P} is a G_{δ} because we can write $\mathbb{P} = \bigcap_{q \in \mathbb{Q}} O_q$, where O_q is the open set $\mathbb{R} = \{q\}$. In Chapter 4, however, we will prove that \mathbb{Q} is <u>not</u> a G_{δ} set in \mathbb{R} .

Find the error in the following argument which "proves" that every subset of \mathbb{R} is a G_{δ} set:

Let $A \subseteq \mathbb{R}$. For $x \in A$, let $J_n = \bigcup \{B_{\frac{1}{n}}(x) : x \in A\}$. J_n is open for each $n \in \mathbb{N}$. Since $\{x\} = \bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(x)$, it follows that $A = \bigcap_{n=1}^{\infty} J_n$, so A is a countable intersection of open sets, that is, A is a G_{δ} set.

4. Let (X, d) be a pseudometric space. Suppose that for every $\epsilon > 0$, there exists a countable subset D_{ϵ} of X with the following property: $\forall x \in X, \exists y \in D_{\epsilon}$ such that $d(x, y) < \epsilon$. Prove that (X, d) is separable.

5. a) Suppose A is a closed set in the pseudometric space (X, d) and that $x_0 \notin A$. Prove that there is a continuous function $f: X \to [0, 1]$ such that f|A = 0 and $f(x_0) = 1$. (*Hint: Consider the function "distance to the set* A.")

b) Suppose A and B are disjoint closed sets in (X, d). Prove that there exists a continuous function $f: X \to \mathbb{R}$ such that f|A = 0 and f|B = 1. (*Hint: Consider* $\frac{d(x,A)}{d(x,A) + d(x,B)}$)

c) Using b) (or by another method) prove that is A and B are disjoint closed sets in (X, d), then there are open sets U and V for which $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

6. A function $f: (X, d) \to (Y, s)$ is called an <u>isometry between X and Y</u> if f is <u>onto</u> and, for all $x, y \in X$, d(x, y) = s(f(x), f(y)). If such an f exists, we say that (X, d) and (Y, s) are <u>isometric</u> to each other. If f is <u>not</u> onto, we say f is an isometry of X into Y, or that f is an isometric embedding of (X, d) into (Y, s).

Let \mathbb{R} and \mathbb{R}^2 have their usual metrics.

a) Prove that there is no isometry between \mathbb{R} and \mathbb{R}^2 .

b) Let $a \in \mathbb{R}$. Prove that there are exactly two isometries from \mathbb{R} onto \mathbb{R} which hold the point *a* fixed (that is, for which f(a) = a).

c) Give an example of a metric space which is isometric to a proper subset of itself.

7. (The Pasting Lemma) The two parts of this problem give conditions when a collection of <u>continuous</u> functions defined on subsets of X can be "united" (= "pasted together") to form a new <u>continuous</u> function. Let A be an indexing set, and suppose the sets O_{α} ($\alpha \in A$) are open in (X, d) and that the sets F_{α} ($\alpha \in A$) are closed in (X, d).

a) Suppose that functions $f_{\alpha} : O_{\alpha} \to (Y, s)$ are continuous and that, if $\alpha \neq \beta$, then $f_{\alpha} | (O_{\alpha} \cap O_{\beta}) = f_{\beta} | (O_{\alpha} \cap O_{\beta})$ (that is, f_{α} and f_{β} agree where their domains overlap). Then $\bigcup_{\alpha \in A} f_{\alpha} = f : \bigcup_{\alpha \in A} O_{\alpha} \to Y$ is continuous.

b) Suppose that for each i = 1, ..., n, $f_i : F_i \to (Y, s)$ is continuous and that, if $i \neq j$, then $f_i|(F_i \cap F_j) = f_j|(F_i \cap F_j)$ (that is, f_i and f_j agree where their domains overlap). Then $f = \bigcup_{i=1}^n f_i : \bigcup_{i=1}^n F_i \to Y$ is a continuous function.

c) Suppose $\{F_{\alpha} : \alpha \in A\}$ has the property that each point $x \in X$ has a neighborhood N_x such that N_x has nonempty intersection with only finitely many of the F_{α} 's. (A family if sets $\{F_{\alpha} : \alpha \in A\}$ with this property is called <u>locally finite</u>.) Then $\bigcup_{\alpha \in A} F_{\alpha}$ is closed. (You proved this in Problem 6b) of Homework 3 – although the wording there involved ϵ -balls rather than neighborhoods. <u>Don't</u> prove this again!)

Suppose that we have continuous functions $f_{\alpha} : F_{\alpha} \to (Y, s)$ and that, if $\alpha \neq \beta \in A$, then $f_{\alpha}|(F_{\alpha} \cap F_{\beta}) = f_{\beta}|(F_{\alpha} \cap F_{\beta})$ (that is, f_{α} and f_{β} agree where their domains overlap).

Let $f = \bigcup_{\alpha \in A} f_{\alpha}$. Then the function $f : \bigcup_{\alpha \in A} F_{\alpha} \to Y$ is continuous.

Note: the most common use of the Pasting Lemma is when the index set A is finite (in which case $\{F_{\alpha} : \alpha \in A\}$ is certainly locally finite!). See the following page.

For example, suppose

 H_1 is defined on the lower closed half of the box $[0,1]^2$, H_2 is defined on the upper closed half, and they agreed on the "overlap" – that is, on the horizontal line segment $[0,1] \times \{\frac{1}{2}\}$. Part c) says the two functions can be pieced together into a <u>continuous function</u> $H : [0,1]^2 \to (X,d)$, where $H = H_1 \cup H_2$.