Math 417, Fall 2009

Homework 4

Homework 4 will be due in class on Thursday, October 15.

1. Suppose (X, d) is a metric space and $x \in X$. Prove that the following two statements are equivalent:
i) x is not an isolated point of X
ii) every open set containing x contains an infinite number of points.
2. The Hilbert cube, H, is a certain subset of $\ell_{2}: H=\left\{x \in \ell_{2}:\left|x_{i}\right| \leq \frac{1}{i}\right\}$. Prove that H is closed in ℓ_{2}. (Not to hand in: is H also open in ℓ_{2} ? Prove or disprove.)
3. A subset A of a space (X, d) is called a G_{δ} set if A can be written as a countable intersection of open sets; A is called an F_{σ} set if A can be written as a countable union of closed sets.

The names G_{δ} and F_{σ} go back to the classic book Mengenlehre of the German mathematician Felix Hausdorff. The " G " and the " F " represent "open" and "closed"; σ and the δ in the notation represent abbreviations for the German words used for union and intersection: Summe and Durchschnitt.
a) Prove that in a pseudometric space (X, d) every closed set is a G_{δ} set and every open set is an F_{σ} set.
b) In \mathbb{R}, the set \mathbb{P} is a G_{δ} because we can write $\mathbb{P}=\bigcap_{q \in \mathbb{Q}} O_{q}$, where O_{q} is the open set $\mathbb{R}=\{q\}$. In Chapter 4, however, we will prove that \mathbb{Q} is not a G_{δ} set in \mathbb{R}.

Find the error in the following argument which "proves" that every subset of \mathbb{R} is a G_{δ} set:

Let $A \subseteq \mathbb{R}$. For $x \in A$, let $J_{n}=\bigcup\left\{B_{\frac{1}{n}}(x): x \in A\right\}$. J_{n} is open for each $n \in \mathbb{N}$. Since $\{x\}=\bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(x)$, it follows that $A=\bigcap_{n=1}^{\infty} J_{n}$, so A is a countable intersection of open sets, that is, A is $a G_{\delta}$ set.
4. Let (X, d) be a pseudometric space. Suppose that for every $\epsilon>0$, there exists a countable subset D_{ϵ} of X with the following property: $\forall x \in X, \exists y \in D_{\epsilon}$ such that $d(x, y)<\epsilon$. Prove that (X, d) is separable.
5. a) Suppose A is a closed set in the pseudometric space (X, d) and that $x_{0} \notin A$. Prove that there is a continuous function $f: X \rightarrow[0,1]$ such that $f \mid A=0$ and $f\left(x_{0}\right)=1$. (Hint: Consider the function "distance to the set A. ")
b) Suppose A and B are disjoint closed sets in (X, d). Prove that there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $f \mid A=0$ and $f \mid B=1$. (Hint: Consider $\frac{d(x, A)}{d(x, A)+d(x, B)}$)
c) Using b) (or by another method) prove that is A and B are disjoint closed sets in (X, d), then there are open sets U and V for which $A \subseteq U, B \subseteq V$ and $U \cap V=\emptyset$.
6. A function $f:(X, d) \rightarrow(Y, s)$ is called an isometry between X and Y if f is onto and, for all $x, y \in X, d(x, y)=s(f(x), f(y))$. If such an f exists, we say that (X, d) and (Y, s) are isometric to each other. If f is not onto, we say f is an isometry of X into Y, or that f is an isometric embedding of (X, d) into (Y, s).

Let \mathbb{R} and \mathbb{R}^{2} have their usual metrics.
a) Prove that there is no isometry between \mathbb{R} and \mathbb{R}^{2}.
b) Let $a \in \mathbb{R}$. Prove that there are exactly two isometries from \mathbb{R} onto \mathbb{R} which hold the point a fixed (that is, for which $f(a)=a$).
c) Give an example of a metric space which is isometric to a proper subset of itself.
7. (The Pasting Lemma) The two parts of this problem give conditions when a collection of continuous functions defined on subsets of X can be "united" (= "pasted together") to form a new continuous function. Let A be an indexing set, and suppose the sets $O_{\alpha}(\alpha \in A)$ are open in (X, d) and that the sets $F_{\alpha}(\alpha \in A)$ are closed in (X, d).
a) Suppose that functions $f_{\alpha}: O_{\alpha} \rightarrow(Y, s)$ are continuous and that, if $\alpha \neq \beta$, then $f_{\alpha}\left|\left(O_{\alpha} \cap O_{\beta}\right)=f_{\beta}\right|\left(O_{\alpha} \cap O_{\beta}\right)$ (that is, f_{α} and f_{β} agree where their domains overlap). Then $\bigcup_{\alpha \in A} f_{\alpha}=f: \bigcup_{\alpha \in A} O_{\alpha} \rightarrow Y$ is continuous.
b) Suppose that for each $i=1, \ldots, n, f_{i}: F_{i} \rightarrow(Y, s)$ is continuous and that, if $i \neq j$, then $f_{i}\left|\left(F_{i} \cap F_{j}\right)=f_{j}\right|\left(F_{i} \cap F_{j}\right)$ (that is, f_{i} and f_{j} agree where their domains overlap).

Then $f=\bigcup_{i=1}^{n} f_{i}: \bigcup_{i=1}^{n} F_{i} \rightarrow Y$ is a continuous function.
c) Suppose $\left\{F_{\alpha}: \alpha \in A\right\}$ has the property that each point $x \in X$ has a neighborhood N_{x} such that N_{x} has nonempty intersection with only finitely many of the F_{α} 's. (A family if sets $\left\{F_{\alpha}: \alpha \in A\right\}$ with this property is called locally finite.) Then $\bigcup_{\alpha \in A} F_{\alpha}$ is closed. (You proved this in Problem 6b) of Homework 3 - although the wording there involved ϵ-balls rather than neighborhoods. Don't prove this again!)

Suppose that we have continuous functions $f_{\alpha}: F_{\alpha} \rightarrow(Y, s)$ and that, if $\alpha \neq \beta \in A$, then $f_{\alpha}\left|\left(F_{\alpha} \cap F_{\beta}\right)=f_{\beta}\right|\left(F_{\alpha} \cap F_{\beta}\right)$ (that is, f_{α} and f_{β} agree where their domains overlap).

Let $f=\bigcup_{\alpha \in A} f_{\alpha}$. Then the function $f: \bigcup_{\alpha \in A} F_{\alpha} \rightarrow Y$ is continuous.

Note: the most common use of the Pasting Lemma is when the index set A is finite (in which case $\left\{F_{\alpha}: \alpha \in A\right\}$ is certainly locally finite!). See the following page.

For example, suppose

$$
H_{1}:[0,1] \times\left[0, \frac{1}{2}\right] \rightarrow(X, d) \text { is continuous, and }
$$

$$
H_{2}:[0,1] \times\left[\frac{1}{2}, 1\right] \rightarrow(X, d) \text { is continuous, and }
$$

$$
H_{1}\left(t, \frac{1}{2}\right)=H_{2}\left(t, \frac{1}{2}\right) \text { for all } t \in[0,1]
$$

H_{1} is defined on the lower closed half of the box $[0,1]^{2}, H_{2}$ is defined on the upper closed half, and they agreed on the "overlap" - that is, on the horizontal line segment $[0,1] \times\left\{\frac{1}{2}\right\}$. Part c) says the two functions can be pieced together into a continuous function $H:[0,1]^{2} \rightarrow(X, d)$, where $H=H_{1} \cup H_{2}$.

