Math 417, Fall 2009 Homework 5

Homework 4 will be due in class on Tuesday, October 27.

Problems to think about: not to hand in:

Prove or give a counterexample:

- i) For any x in a space (X, \mathcal{T}) , $\{x\}$ is equal to the intersection of all open sets containing x.
- ii) In (X, \mathcal{T}) , a finite set must be closed.
- iii) If for each $\alpha \in A$, each \mathcal{T}_{α} is a topology on X, then $\bigcap \{\mathcal{T}_{\alpha} : \alpha \in A\}$ is a topology on X.
- iv) If \mathcal{T}_1 and \mathcal{T}_2 are topologies on *X*, then there is a unique smallest topology \mathcal{T}_3 on *X* such that $\mathcal{T}_3 \supseteq \mathcal{T}_1 \cup \mathcal{T}_2$.
- v) If for each $\alpha \in A$, each \mathcal{T}_{α} is a topology on X, then there is a unique smallest topology \mathcal{T} on X such that for each α , $\mathcal{T} \supseteq \mathcal{T}_{\alpha}$.

To hand in:

1. Let $X = \{0, 1, 2, 3, ...\}$. For $O \subseteq X$, let $|O \cap [1, n]|$ = the cardinality of $O \cap [1, n]$. Define

$$\mathcal{T} = \{ O : 0 \notin O \text{ or } (0 \in O \text{ and } \lim_{n \to \infty} \frac{|O \cap [1,n]|}{n} = 1) \}.$$

a) Prove that \mathcal{T} is a topology on X.

b) In <u>any</u> space (Y, T): x is called a <u>limit point</u> of a subset A if $N \cap (A - \{x\}) \neq \emptyset$ for every neighborhood N of x. Informally, this means that "there are points in A, different from x, that are arbitrarily close to x."

Prove that in any space (Y, \mathcal{T}) , a subset B is closed iff B contains all of its limit points.

c) For the space (X, \mathcal{T}) defined above, prove that x is a limit point of X if and only if x = 0.

2. A space (X, \mathcal{T}) is called a T_1 -space if, for each $x \in X$, $\{x\}$ is closed.

a) Give an example of a space (X, \mathcal{T}) that is not a T_1 -space and where \mathcal{T} is <u>not</u> the trivial topology.

b) Prove that X is a T_1 -space if and only if:

whenever $x \neq y$, there exist open sets U and V for which $x \in U, y \notin U$ and $y \in V, x \notin V$ (that is: each point is in an open set that does not contain the other point)

c) Prove that a subspace of a T_1 -space is a T_1 -space.

3. A space (X, T) is called a T_2 -space (or <u>Hausdorff space</u>) if whenever $x, y \in X$ and $x \neq y$, then there exist disjoint open sets U and V with $x \in U$ and $y \in V$.

- a) Give an example of a space (X, \mathcal{T}) which is a T_1 -space but not a T_2 -space.
- b) Prove that a subspace of a Hausdorff space is Hausdorff.

4. We say that a space (X, \mathcal{T}) satisfies the <u>countable chain condition</u> (= CCC) if every family of disjoint open sets must be countable.

- a) Prove that a separable space (X, \mathcal{T}) satisfies the CCC.
- b) Give an example of a space satisfying CCC which is not separable.
- 5. A point $x \in (X, \mathcal{T})$ is called a <u>condensation point</u> if every neighborhood of x is uncountable.
 - a) Prove that the set C of all condensation points in X is closed.
 - b) Prove that if X has a countable base \mathcal{B} for the topology, then X C is countable.

6. Suppose that (X, \mathcal{T}) and (Y, \mathcal{T}') are topological spaces. The <u>product topology</u> on $X \times Y$ is defined to be the topology for which the collection of "open boxes"

 $\mathcal{B} = \{U \times V : U \in \mathcal{T}, V \in \mathcal{T}'\}$ is a base.

Therefore a set $O \subseteq X \times Y$ is open in the product topology iff for all $(x, y) \in O$, there are open sets $U \subseteq X$ and $V \subseteq Y$ such that $(x, y) \in U \times V \subseteq O$.

You should check for yourself that \mathcal{B} does satisfy the necessary conditions in The Base Theorem. But don't include that with your solutions. We always assume that the topology on $X \times Y$ is the product topology unless something different is explicitly stated.

Note that the product topology on $\mathbb{R} \times \mathbb{R}$ is the usual topology on \mathbb{R}^2 .

a) Prove that if X and Y are Hausdorff, then $X \times Y$ is Hausdorff. (See #3.)

b) Let $\pi_X : X \times Y \to X$ be the projection map $\pi_X(x, y) = x$. Prove that

i) if U is open in X, then $\pi_x^{-1}[U]$ is open in $X \times Y$

ii) if O is open in $X \times Y$, then $\pi_X[O]$ is open in X. (*Caution: you cannot assume that O is a "box"* $U \times V$!)

i) and ii) say that π_X is a continuous, open map. The same results are also true for the other projection $\pi_Y : X \times Y \to Y$ defined by $\pi_Y(x, y) = y$.

c) Prove that if $A \subseteq X$ and $B \subseteq Y$, then $cl_{X \times Y}(A \times B) = cl_X A \times cl_Y B$. Use this to prove that $X \times Y$ is separable if X and Y are separable.

Note: c) also implies that if A is closed in X and B is closed in Y, then A \times B is closed in X \times Y: "a product of closed sets is closed."

d) Suppose (X, d_1) and (Y, d_2) are pseudometric spaces. Define a pseudometric d on the set $X \times Y$ by

$$d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2)$$

Prove that the product topology on $X \times Y$ is the same as the topology \mathcal{T}_d .

Note: This proves that the product of two pseudometric spaces is pseudometrizable. d is the analogue of the taxicab metric in \mathbb{R}^2 . Other pseudometrics on $X \times Y$ that are equivalent to d are

$$d'((x_1, y_1), (x_2, y_2)) = (d_1^2(x_1, x_2) + d_2^2(y_1, y_2))^{1/2}$$
$$d''((x_1, y_1), (x_2, y_2)) = \max\{d_1(x_1, x_2), d_2(y_1, y_2)\}$$