Suppose \(A \) is an uncountable subset of \(\mathbb{R} \) with \(|A| = m < c \). (Of course, there is no such set \(A \) if the Continuum Hypothesis is assumed.) Is it possible for \(A \) to be closed? Explain.

1. Prove that in a metric space \((X, d)\), the following are equivalent:
 a) every Cauchy sequence is eventually constant
 b) \((X, d)\) is complete and \(T_d \) is the discrete topology
 c) for every \(A \subseteq X \), each Cauchy sequence in \(A \) converges to a point in \(A \)
 (that is, every subspace of \((X, d)\) is complete).

2. a) Suppose \(X \) is a Hausdorff space and that \(f : X \to X \) is continuous. Prove that the set of all fixed points \(C = \{ x \in X : f(x) = x \} \) is closed.

 b) Suppose \(A \subseteq \mathbb{R} \) and that \(A \) is closed. Prove that there exists a continuous \(f : \mathbb{R} \to \mathbb{R} \) such that \(A = \{ x \in \mathbb{R} : f(x) = x \} \).

 \[\text{Hint: One way is this. Begin by finding a function } g : \mathbb{R} \to \mathbb{R} \text{ such that } g(x) = 1 \text{ iff } x \in A. \]
 \[\text{You should be able to define such a } g \text{ in terms of the function } d(x, A). \text{ Or perhaps you have a better idea. Once you have such a } g, \text{ then you might get an idea from part of Example 4.2.1.)} \]

3. a) Suppose \(f : \mathbb{R} \to \mathbb{R} \) is differentiable and that there is a constant \(K < 1 \) such that \(|f'(x)| \leq K \) for all \(x \). Prove that \(f \) is a contraction (and therefore has a unique fixed point.)

 b) Give an example of a continuous function \(f : \mathbb{R} \to \mathbb{R} \) such that
 \[|f(x) - f(y)| < |x - y| \]
 for all \(x \neq y \in \mathbb{R} \) but such that \(f \) has no fixed point.

 \[\text{Note: The function } f \text{ is not a contraction mapping. The contraction mapping theorem would not be true if we allowed } \alpha = 1 \text{ in the definition of contraction mapping.} \]
4. Let \(f : (X, d) \to (X, d) \), where \((X, d)\) is a nonempty complete metric space. Let \(f^k \) denote the “\(k \)th iterate of \(f \)” — that is, \(f \) composed with itself \(k \) times.

a) Suppose that \(\exists k \in \mathbb{N} \) for which \(f^k \) is a contraction. Then, by the Contraction Mapping Theorem, \(f^k \) has a unique fixed point \(p \). Prove that \(p \) is also the unique fixed point for \(f \).

b) Prove that the function \(\cos : \mathbb{R} \to \mathbb{R} \) is not a contraction.

c) Prove that \(\cos^k \) is a contraction for some \(k \in \mathbb{N} \).

(Hint: the Mean Value Theorem may be helpful.)

d) Let \(k \in \mathbb{N} \) be such that \(g = \cos^k \) is a contraction and let \(p \) be the unique fixed point of \(g \). By a), \(p \) is also the unique solution of the equation \(\cos x = x \). Start with 0 as a “first approximation” for \(p \) and use the technique in the proof of the Contraction Mapping Theorem to find an \(n \in \mathbb{N} \) so that \(|g^n(0) - p| < 0.00001 \).

e) For this \(n \), use a calculator or computer to evaluate \(g^n(0) \). (This “solves” the equation \(\cos x = x \) with \(|\text{Error}| < 0.00001 \).)

5. Consider the differential equation \(y' = x - y \) with the initial condition \(y(0) = 2 \). Choose a suitable rectangle \(D \) and suitable constants \(K, M \) and \(a \) as in the proof of Picard's Theorem. Use the technique in the proof of the contraction mapping theorem to find a solution for the initial value problem. Identify the interval \(I \) in the proof. Is the solution you found actually valid on an interval larger than \(I \)?