Math 417, Fall 2009

Homework 7
Homework 7 will be due in class on Thursday, November 19

Not to hand in

Suppose A is an uncountable subset of \mathbb{R} with $|A|=m<c$. (Of course, there is no such set A if the Continuum Hypothesis is assumed.) Is it possible for A to be closed? Explain.

1. Prove that in a metric space (X, d), the following are equivalent:
a) every Cauchy sequence is eventually constant
b) (X, d) is complete and \mathcal{T}_{d} is the discrete topology
c) for every $A \subseteq X$, each Cauchy sequence in A converges to a point in A (that is, every subspace of (X, d) is complete).
2. a) Suppose X is a Hausdorff space and that $f: X \rightarrow X$ is continuous. Prove that the set of all fixed points $C=\{x \in X: f(x)=x\}$ is closed.
b) Suppose $A \subseteq \mathbb{R}$ and that A is closed. Prove that there exists a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $A=\{x \in \mathbb{R}: f(x)=x\}$.

Hint: One way is this. Begin by finding a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(x)=1$ iff $x \in A$. You should be able to define such a g in terms of the function $d(x, A)$. Or perhaps you have a better idea. Once you have such a g, then you might get an idea from part of Example 4.2.1.)
3. a) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and that there is a constant $K<1$ such that $\left|f^{\prime}(x)\right| \leq K$ for all x. Prove that f is a contraction (and therefore has a unique fixed point.)
b) Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
|f(x)-f(y)|<|x-y|
$$

for all $x \neq y \in \mathbb{R}$ but such that f has no fixed point.
Note: The function f is not a contraction mapping. The contraction mapping theorem would not be true if we allowed $\alpha=1$ in the definition of contraction mapping.
4. Let $f:(X, d) \rightarrow(X, d)$, where (X, d) is a nonempty complete metric space. Let f^{k} denote the " $k^{\text {th }}$ iterate of f " - that is, f composed with itself k times.
a) Suppose that $\exists k \in \mathbb{N}$ for which f^{k} is a contraction. Then, by the Contraction Mapping Theorem, f^{k} has a unique fixed point p. Prove that p is also the unique fixed point for f.
b) Prove that the function $\cos : \mathbb{R} \rightarrow \mathbb{R}$ is not a contraction.
c) Prove that $\cos ^{k}$ is a contraction for some $k \in \mathbb{N}$. (Hint: the Mean Value Theorem may be helpful.)
d) Let $k \in \mathbb{N}$ be such that $g=\cos ^{k}$ is a contraction and let p be the unique fixed point of g. By a), p is also the unique solution of the equation $\cos x=x$. Start with 0 as a "first approximation" for p and use the technique in the proof of the Contraction Mapping Theorem to find an $n \in \mathbb{N}$ so that $\left|g^{n}(0)-p\right|<0.00001$.
e) For this n, use a calculator or computer to evaluate $g^{n}(0)$. (This "solves" the equation $\cos x=x$ with \mid Error $\mid<0.00001$.)
5. Consider the differential equation $y^{\prime}=x-y$ with the initial condition $y(0)=2$. Choose a suitable rectangle D and suitable constants K, M and a as in the proof of Picard's Theorem. Use the technique in the proof of the contraction mapping theorem to find a solution for the initial value problem. Identify the interval I in the proof. Is the solution you found actually valid on an interval larger than I ?

